Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 1 von 2131

Details

Autor(en) / Beteiligte
Titel
Two-Photon Microscopy and Spectroscopy Studies to Determine the Mechanism of Copper Oxide Nanoparticle Uptake by Sweetpotato Roots during Postharvest Treatment
Ist Teil von
  • Environmental science & technology, 2018-09, Vol.52 (17), p.9954-9963
Ort / Verlag
United States: American Chemical Society
Erscheinungsjahr
2018
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • The interaction of engineered nanoparticles with plant tissues is still not well understood. There is a lack of information about the effects of curing (postharvest treatment) and lignin content on copper uptake by sweetpotato roots exposed to copper-based nanopesticides. In this study, Beauregard-14 (lower lignin) and Covington (higher lignin) varieties were exposed to CuO nanoparticles (nCuO), bulk CuO (bCuO), and CuCl2 at 0, 25, 75, and 125 mg/L. Cured and uncured roots were submerged into copper suspensions/solutions for 30 min. Subsequently, root segments were sliced for imaging with a 2-photon microscope, while other root portions were severed into periderm, cortex, perimedulla, and medulla. They were individually digested and analyzed for Cu content by inductively coupled plasma-optical emission spectroscopy. Microscopy images showed higher fluorescence in periderm and cortex of roots exposed to nCuO, compared with bCuO. At 25 mg/L, only bCuO showed higher Cu concentration in the periderm and cortex of Beauregard-14 (2049 mg/kg and 76 mg/kg before curing; 6769 mg/kg and 354 mg/kg after curing, respectively) and in cortex of Covington (692 mg/kg before curing and 110 mg/kg after curing) compared with controls (p ≤ 0.05). In medulla, the most internal tissue, only Beauregard-14 exposed to 125 mg bCuO/L showed significantly (p ≤ 0.05) more Cu before curing (17 mg/kg) and after curing (28 mg/kg), compared with control. This research has shown that the 2-photon microscope can be used to determine CuO particles in nondyed plant tissues. The lack of Cu increase in perimedulla and medulla, even in roots exposed to high CuO concentrations (125 mg/L), suggests that nCuO may represent a good alternative to protect and increase the shelf life of sweetpotato roots, without exposing consumers to excess Cu.
Sprache
Englisch
Identifikatoren
ISSN: 0013-936X
eISSN: 1520-5851
DOI: 10.1021/acs.est.8b02794
Titel-ID: cdi_proquest_miscellaneous_2081551181

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX