Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Cerebrovascular reactivity (CVR) is a measure of vascular response to a vasoactive stimulus, and can be used to assess the health of the brain vasculature. In this current study we used different analyses of BOLD fMRI responses to CO2 to provide a number of metrics including ramp and step CVR, speed of response and transfer function analysis (TFA). 51 healthy control volunteers between the ages of 18–85 (26 males) were recruited and scanned at 3T field strength. Atlases reflecting voxel-wise means and standard deviations were compiled to assess possible differences in these metrics between four age cohorts. Testing was carried out using an automated computer-controlled gas blender to induce hypercapnia in a step and ramp paradigm, and monitoring end-tidal partial pressures of CO2 (PETCO2) and O2 (PETO2). No significant differences were found for resting PETCO2 values between cohorts. Ramp CVR decreased significantly with age in white matter frontal regions comprising the ACA-MCA watershed area, a finding that may be indicative of age related changes. Similarly, TFA showed that gain was reduced in the left white matter ACA-MCA watershed area as well as the posterior and anterior cingulate cortex, and superior frontal gyrus in the oldest compared to youngest cohort. These findings, detailing changes in cerebrovascular regulation in the healthy aging brain should prove useful in mapping areas of dysregulated blood flow in individuals with vascular risk factors especially those at risk for developing vascular dementia.
•Gray matter cerebrovascular reactivity metrics are largely stable across ages.•White matter cerebrovascular reactivity metrics are largely stable across ages.•The magnitude of the cingulum and frontal regions are affected in old age.•No significant difference in resting end-tidal pressure of carbon dioxide with aging.