Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Science (American Association for the Advancement of Science), 2018-05, Vol.360 (6391), p.854-855
2018

Details

Autor(en) / Beteiligte
Titel
Enhancing energy transport in conjugated polymers
Ist Teil von
  • Science (American Association for the Advancement of Science), 2018-05, Vol.360 (6391), p.854-855
Ort / Verlag
United States: The American Association for the Advancement of Science
Erscheinungsjahr
2018
Link zum Volltext
Quelle
Science Online_科学在线
Beschreibungen/Notizen
  • Scalable synthesis enables long-distance exciton transport in crystalline polymer nanofibers The conversion of light into usable chemical energy by plants is enabled by the precise spatial arrangement of light-absorbing photosynthetic systems and associated molecular complexes ( 1 ). In organic solar cells, there is also the need to control intermolecular spacing and molecular orientation, as well as thin-film crystallinity and morphology, so as to enable efficient energy migration and photoconversion ( 2 ). In an organic solar cell, light absorption creates excitons, tightly bound electron-hole pairs that must be efficiently dissociated into their component charge carriers in order to create an electrical current. Thus, long-range exciton migration must occur from the point of photogeneration to a dissociating site. On page 897 of this issue, Jin et al. ( 3 ) report on a conjugated polymer nanofiber system that yields exciton diffusion lengths greater than 200 nm. In comparison, organic solar cells are typically constructed with materials having exciton diffusion lengths one order of magnitude smaller than this value, which limits device thickness and optical absorption. Their approach exploits a sequential synthesis method that enables measurement of this long exciton diffusion length (see the figure).
Sprache
Englisch
Identifikatoren
ISSN: 0036-8075
eISSN: 1095-9203
DOI: 10.1126/science.aat6009
Titel-ID: cdi_proquest_miscellaneous_2045301986

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX