Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Applying machine learning methods to avalanche forecasting
Ist Teil von
Annals of glaciology, 2008, Vol.49, p.107-113
Ort / Verlag
Cambridge, UK: Cambridge University Press
Erscheinungsjahr
2008
Quelle
EZB-FREE-00999 freely available EZB journals
Beschreibungen/Notizen
Avalanche forecasting is a complex process involving the assimilation of multiple data sources to make predictions over varying spatial and temporal resolutions. Numerically assisted forecasting often uses nearest-neighbour methods (NN), which are known to have limitations when dealing with high-dimensional data. We apply support vector machines (SVMs) to a dataset from Lochaber, Scotland, UK, to assess their applicability in avalanche forecasting. SVMs belong to a family of theoretically based techniques from machine learning and are designed to deal with high-dimensional data. Initial experiments showed that SVMs gave results that were comparable with NN for categorical and probabilistic forecasts. Experiments utilizing the ability of SVMs to deal with high dimensionality in producing a spatial forecast show promise, but require further work.
Sprache
Englisch
Identifikatoren
ISSN: 0260-3055
eISSN: 1727-5644
DOI: 10.3189/172756408787814870
Titel-ID: cdi_proquest_miscellaneous_20385409
Format
–
Weiterführende Literatur
Empfehlungen zum selben Thema automatisch vorgeschlagen von bX