Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
BNPMDA: Bipartite Network Projection for MiRNA-Disease Association prediction
Ist Teil von
Bioinformatics, 2018-09, Vol.34 (18), p.3178-3186
Ort / Verlag
England: Oxford University Press
Erscheinungsjahr
2018
Quelle
EZB Electronic Journals Library
Beschreibungen/Notizen
Abstract
Motivation
A large number of resources have been devoted to exploring the associations between microRNAs (miRNAs) and diseases in the recent years. However, the experimental methods are expensive and time-consuming. Therefore, the computational methods to predict potential miRNA-disease associations have been paid increasing attention.
Results
In this paper, we proposed a novel computational model of Bipartite Network Projection for MiRNA-Disease Association prediction (BNPMDA) based on the known miRNA-disease associations, integrated miRNA similarity and integrated disease similarity. We firstly described the preference degree of a miRNA for its related disease and the preference degree of a disease for its related miRNA with the bias ratings. We constructed bias ratings for miRNAs and diseases by using agglomerative hierarchical clustering according to the three types of networks. Then, we implemented the bipartite network recommendation algorithm to predict the potential miRNA-disease associations by assigning transfer weights to resource allocation links between miRNAs and diseases based on the bias ratings. BNPMDA had been shown to improve the prediction accuracy in comparison with previous models according to the area under the receiver operating characteristics (ROC) curve (AUC) results of three typical cross validations. As a result, the AUCs of Global LOOCV, Local LOOCV and 5-fold cross validation obtained by implementing BNPMDA were 0.9028, 0.8380 and 0.8980 ± 0.0013, respectively. We further implemented two types of case studies on several important human complex diseases to confirm the effectiveness of BNPMDA. In conclusion, BNPMDA could effectively predict the potential miRNA-disease associations at a high accuracy level.
Availability and implementation
BNPMDA is available via http://www.escience.cn/system/file?fileId=99559.
Supplementary information
Supplementary data are available at Bioinformatics online.
Sprache
Englisch
Identifikatoren
ISSN: 1367-4803
eISSN: 1460-2059, 1367-4811
DOI: 10.1093/bioinformatics/bty333
Titel-ID: cdi_proquest_miscellaneous_2032419229
Format
–
Weiterführende Literatur
Empfehlungen zum selben Thema automatisch vorgeschlagen von bX