Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 25 von 34

Details

Autor(en) / Beteiligte
Titel
Improving the modelling of irradiation-induced brain activation for in vivo PET verification of proton therapy
Ist Teil von
  • Radiotherapy and oncology, 2018-07, Vol.128 (1), p.101-108
Ort / Verlag
Ireland: Elsevier B.V
Erscheinungsjahr
2018
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • A reliable Monte Carlo prediction of proton-induced brain tissue activation used for comparison to particle therapy positron-emission-tomography (PT-PET) measurements is crucial for in vivo treatment verification. Major limitations of current approaches to overcome include the CT-based patient model and the description of activity washout due to tissue perfusion. Two approaches were studied to improve the activity prediction for brain irradiation: (i) a refined patient model using tissue classification based on MR information and (ii) a PT-PET data-driven refinement of washout model parameters. Improvements of the activity predictions compared to post-treatment PT-PET measurements were assessed in terms of activity profile similarity for six patients treated with a single or two almost parallel fields delivered by active proton beam scanning. The refined patient model yields a generally higher similarity for most of the patients, except in highly pathological areas leading to tissue misclassification. Using washout model parameters deduced from clinical patient data could considerably improve the activity profile similarity for all patients. Current methods used to predict proton-induced brain tissue activation can be improved with MR-based tissue classification and data-driven washout parameters, thus providing a more reliable basis for PT-PET verification.
Sprache
Englisch
Identifikatoren
ISSN: 0167-8140
eISSN: 1879-0887
DOI: 10.1016/j.radonc.2018.01.016
Titel-ID: cdi_proquest_miscellaneous_2032402264

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX