Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 18 von 1392

Details

Autor(en) / Beteiligte
Titel
Regeneration in zebrafish lateral line neuromasts: Expression of the neural progenitor cell marker sox2 and proliferation‐dependent and‐independent mechanisms of hair cell renewal
Ist Teil von
  • Developmental neurobiology (Hoboken, N.J.), 2007-04, Vol.67 (5), p.637-654
Ort / Verlag
Hoboken: Wiley Subscription Services, Inc., A Wiley Company
Erscheinungsjahr
2007
Quelle
Wiley-Blackwell Full Collection
Beschreibungen/Notizen
  • Mechanosensory hair cells are essential for audition in vertebrates, and in many species, have the capacity for regeneration when damaged. Regeneration is robust in the fish lateral line system as new hair cells can reappear after damage induced by waterborne aminoglycoside antibiotics, platinum‐based drugs, and heavy metals. Here, we characterize the loss and reappearance of lateral line hair cells induced in zebrafish larvae treated with copper sulfate using diverse molecular markers. Transgenic fish that express green fluorescent protein in different cell types in the lateral line system have allowed us to follow the regeneration of hair cells after different damage protocols. We show that conditions that damage only differentiated hair cells lead to reappearance of new hair cells within 24 h from nondividing precursors, whereas harsher conditions are followed by a longer recovery period that is accompanied by extensive cell division. In order to characterize the cell population that gives rise to new hair cells, we describe the expression of a neural stem cell marker in neuromasts. The zebrafish sox2 gene is strongly expressed in neuromast progenitor cells, including those of the migrating lateral line primordium, the accessory cells that underlie the hair cells in neuromasts, and in interneuromastic cells that give rise to new neuromasts. Moreover, we find that most of the cells that proliferate within the neuromast during regeneration express this marker. Thus, our results describe the dynamics of hair cell regeneration in zebrafish and suggest the existence of at least two mechanisms for recovery of these cells in neuromasts. © 2007 Wiley Periodicals, Inc. Develop Neurobiol, 2007

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX