Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 22 von 500

Details

Autor(en) / Beteiligte
Titel
Pyridine‐substituted thiazolylphenol derivatives: Synthesis, modeling studies, aromatase inhibition, and antiproliferative activity evaluation
Ist Teil von
  • Archiv der Pharmazie (Weinheim), 2018-04, Vol.351 (3-4), p.e1700272-n/a
Ort / Verlag
Germany: Wiley Subscription Services, Inc
Erscheinungsjahr
2018
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Drugs used in breast cancer treatments target the suppression of estrogen biosynthesis. During this suppression, the main goal is to inhibit the aromatase enzyme that is responsible for the cyclization and structuring of estrogens either with steroid or non‐steroidal‐type inhibitors. Non‐steroidal derivatives generally have a planar aromatic structure attached to the triazole ring system in their structures, which inhibits hydroxylation reactions during aromatization by coordinating the heme group. Bioisosteric replacement of the triazole ring system and development of aromatic/cyclic structures of the side chain can increase the selectivity for aromatase enzyme inhibition. In this study, pyridine‐substituted thiazolylphenol derivatives, which are non‐steroidal triazole bioisosteres, were synthesized using the Hantzsch method, and physical analysis and structural determination studies were performed. The IC50 values of the compounds were determined by a fluorescence‐based aromatase inhibition assay. Then, their antiproliferative activities on the MCF7 and HEK 293 cell lines were evaluated with the 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) assay. Furthermore, the crystal structure of human placental aromatase was subjected to a series of docking experiments to identify the possible interactions between the most active structure and the active site. Lastly, an in silico technique was performed to analyze and predict the drug‐likeness, molecular and ADME properties of the synthesized molecules. From a series of pyridine‐substituted thiazolylphenol derivatives synthesized by the Hantzsch method, 3‐[2‐(pyridin‐4‐yl)thiazol‐4‐yl]phenol (6) was found to be a more active aromatase inhibitor than the standard, ketoconazole. In docking experiments in the aromatase active site, compound 6 fitted well into the pocket, similar to anastrazole where the pyridine ring system was coordinated with the heme moiety.
Sprache
Englisch
Identifikatoren
ISSN: 0365-6233
eISSN: 1521-4184
DOI: 10.1002/ardp.201700272
Titel-ID: cdi_proquest_miscellaneous_2012921580

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX