Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 10 von 32

Details

Autor(en) / Beteiligte
Titel
Pt‐Pd Bimetal Popcorn Nanocrystals: Enhancing the Catalytic Performance by Combination Effect of Stable Multipetals Nanostructure and Highly Accessible Active Sites
Ist Teil von
  • Small (Weinheim an der Bergstrasse, Germany), 2018-04, Vol.14 (14), p.e1703613-n/a
Ort / Verlag
Germany: Wiley Subscription Services, Inc
Erscheinungsjahr
2018
Quelle
Wiley Online Library
Beschreibungen/Notizen
  • Exploration of highly efficient electrocatalysts is significantly urgent for the extensive adoption of the fuel cells. Because of their high activity and super stability, Pt‐Pd bimetal nanocrystals have been widely recognized as one class of promising electrocatalysts for oxygen reduction. This article presents the synthesis of popcorn‐shaped Pt‐Pd bimetal nanoparticles with a wide composition range through a facile hydrothermal strategy. The hollow‐centered nanoparticles are surrounded by several petals and concave surfaces. By exploring the oxygen reduction reaction on the carbon supported Pt‐Pd popcorns in perchloric acid solution, it is found that compared with the commercial Pt/C catalyst the present catalysts display superior catalytic performances in aspects of catalytic activity and stability. More importantly, the Pt‐Pd popcorns display minor performance degradations through prolonged potential cycling. The enhanced performances can be mainly attributed to the unique popcorn structure of the Pt‐Pd components, which allows the appearance and long existence of the high active sites with more accessibility. The present work highlights the key roles of accessible high active sites in the oxygen reduction reaction, which will ultimately guide the design of highly durable Pt‐Pd catalysts. Pt‐Pd nanopopcorns in wide composition range are synthesized. The popcorns display high activities and superior stability in catalyzing oxygen reduction due to the multipetal nanostructure and a great number of active sites with high accessibility.
Sprache
Englisch
Identifikatoren
ISSN: 1613-6810
eISSN: 1613-6829
DOI: 10.1002/smll.201703613
Titel-ID: cdi_proquest_miscellaneous_2007424885

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX