Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Electrical stimulation as a conditioning strategy for promoting and accelerating peripheral nerve regeneration
Ist Teil von
Experimental neurology, 2018-04, Vol.302, p.75-84
Ort / Verlag
United States: Elsevier Inc
Erscheinungsjahr
2018
Quelle
MEDLINE
Beschreibungen/Notizen
The delivery of a nerve insult (a “conditioning lesion”) prior to a subsequent test lesion increases the number of regenerating axons and accelerates the speed of regeneration from the test site. A major barrier to clinical translation is the lack of an ethically acceptable and clinically feasible method of conditioning that does not further damage the nerve. Conditioning electrical stimulation (CES), a non-injurious intervention, has previously been shown to improve neurite outgrowth in vitro. In this study, we examined whether CES upregulates regeneration-associated gene (RAG) expression and promotes nerve regeneration in vivo, similar to a traditional nerve crush conditioning lesion (CCL). Adult rats were divided into four cohorts based on conditioning treatment to the common peroneal (fibular) nerve: i) CES (1h, 20Hz); ii) CCL (10s crush); iii) sham CES (1h, 0Hz); or iv) naïve (unconditioned). Immunofluorescence and qRT-PCR revealed significant RAG upregulation in the dorsal root ganglia of both CES and CCL animals, evident at 3–14days post-conditioning. To mimic a clinical microsurgical nerve repair, all cohorts underwent a common peroneal nerve cut and coaptation one week following conditioning. Both CES and CCL animals increased the length of nerve regeneration (3.8-fold) as well as the total number of regenerating axons (2.2-fold), compared to the sham and naïve-conditioned animals (p<0.001). These data support CES as a non-injurious conditioning paradigm that is comparable to a traditional CCL and is therefore a novel means to potentially enhance peripheral nerve repair in the clinical setting.
•Conditioning electrical stimulation of uninjured nerves upregulates regeneration-associated gene expression•Conditioning electrical stimulation accelerates nerve regeneration similar to conditioning crush lesions•Electrical nerve stimulation may be a clinically acceptable conditioning method prior to nerve transfer repairs