Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 17 von 487

Details

Autor(en) / Beteiligte
Titel
The RIN-MC Fusion of MADS-Box Transcription Factors Has Transcriptional Activity and Modulates Expression of Many Ripening Genes
Ist Teil von
  • Plant physiology (Bethesda), 2018-01, Vol.176 (1), p.891-909
Ort / Verlag
United States: American Society of Plant Biologists
Erscheinungsjahr
2018
Quelle
MEDLINE
Beschreibungen/Notizen
  • Fruit development and ripening is regulated by genetic and environmental factors and is of critical importance for seed dispersal, reproduction, and fruit quality. Tomato (Solanum lycopersicum) ripening inhibitor (rin) mutant fruit have a classic ripening-inhibited phenotype, which is attributed to a genomic DNA deletion resulting in the fusion of two truncated transcription factors, RIN and MC. In wild-type fruit, RIN, a MADS-box transcription factor, is a key regulator of the ripening gene expression network, with hundreds of gene targets controlling changes in color, flavor, texture, and taste during tomato fruit ripening; MC, on the other hand, has low expression in fruit, and the potential functions of the RIN-MC fusion gene in ripening remain unclear. Here, overexpression of RIN-MC in transgenic wild-type cv Ailsa Craig tomato fruits impaired several ripening processes, and down-regulating RIN-MC expression in the rin mutant was found to stimulate the normal yellow mutant fruit to produce a weak red color, suggesting a distinct negative role for RIN-MC in tomato fruit ripening. By comparative transcriptome analysis of rin and rin 35S::RIN-MC RNA interference fruits, a total of 1,168 and 1,234 genes were identified as potential targets of RIN-MC activation and inhibition. Furthermore, the RIN-MC fusion gene was shown to be translated into a chimeric transcription factor that was localized to the nucleus and was capable of protein interactions with other MADS-box factors. These results indicated that tomato RIN-MC fusion plays a negative role in ripening and encodes a chimeric transcription factor that modulates the expression of many ripening genes, thereby contributing to the rin mutant phenotype.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX