Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 22 von 540
International journal of psychophysiology, 2018-10, Vol.132 (Pt A), p.105-123
2018

Details

Autor(en) / Beteiligte
Titel
Structural neuroimaging in sport-related concussion
Ist Teil von
  • International journal of psychophysiology, 2018-10, Vol.132 (Pt A), p.105-123
Ort / Verlag
Netherlands: Elsevier B.V
Erscheinungsjahr
2018
Link zum Volltext
Quelle
Elsevier ScienceDirect Journals
Beschreibungen/Notizen
  • Structural neuroimaging of athletes who have sustained a sports-related concussion (SRC) can be viewed as either standard clinical imaging or with advanced neuroimaging methods that quantitatively assess brain structure. Negative findings from conventional computed tomography (CT) or magnetic resonance imaging (MRI) are the norm in SRC. Nonetheless, these conventional measures remain the first line of neuroimaging of the athlete as they do detect clinically significant pathologies, when present, such as hemorrhagic abnormalities in the form of hematomas, contusions and mircobleeds along with regions of focal encephalomalacia or other signal abnormalities, with CT best capable of detecting skull fractures. However, advanced neuroimaging techniques hold particular promise in detecting subtle neuropathology in the athlete which standard clinical neuroimaging cannot. To best understand what conventional as well as quantitative neuroimaging methods are detecting in SRC, this review begins by covering basic neuroanatomical principles associated with mild traumatic brain injury (mTBI) and the brain regions most vulnerable to injury from SRC, as these regions define where advanced neuroimaging methods most likely detect abnormalities. Advanced MRI techniques incorporate quantitative metrics that include volume, shape, thickness along with diffusion parameters that provide a more fine-grained analysis of brain structure. With advancements in image analysis, multiple quantitative neuroimaging metrics now can be utilized in assessing SRC. Such multimodality approaches are particularly relevant and important for assessing white matter and network integrity of the brain following injury, including SRC. This review focuses just on the structural side of neuroimaging in SRC, but these techniques also are being integrated with functional neuroimaging, where the combination of the two approaches may provide superior methods in assessing the pathological effects of SRC. •Advanced MRI detects brain abnormalities not identifiable in conventional neuroimaging•Advanced MRI techniques measure volume, thickness, shape and diffusion properties of brain structure and their alteration in SRC•Advanced neuroimaging has clinical potential in assessing and managing the athlete with SRC

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX