Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 18 von 33774
IEEE transaction on neural networks and learning systems, 2018-08, Vol.29 (8), p.3747-3760
2018
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Adaptive Approximation-Based Regulation Control for a Class of Uncertain Nonlinear Systems Without Feedback Linearizability
Ist Teil von
  • IEEE transaction on neural networks and learning systems, 2018-08, Vol.29 (8), p.3747-3760
Ort / Verlag
United States: IEEE
Erscheinungsjahr
2018
Quelle
IEEE Electronic Library (IEL)
Beschreibungen/Notizen
  • In this paper, for a general class of uncertain nonlinear (cascade) systems, including unknown dynamics, which are not feedback linearizable and cannot be solved by existing approaches, an innovative adaptive approximation-based regulation control (AARC) scheme is developed. Within the framework of adding a power integrator (API), by deriving adaptive laws for output weights and prediction error compensation pertaining to single-hidden-layer feedforward network (SLFN) from the Lyapunov synthesis, a series of SLFN-based approximators are explicitly constructed to exactly dominate completely unknown dynamics. By the virtue of significant advancements on the API technique, an adaptive API methodology is eventually established in combination with SLFN-based adaptive approximators, and it contributes to a recursive mechanism for the AARC scheme. As a consequence, the output regulation error can asymptotically converge to the origin, and all other signals of the closed-loop system are uniformly ultimately bounded. Simulation studies and comprehensive comparisons with backstepping- and API-based approaches demonstrate that the proposed AARC scheme achieves remarkable performance and superiority in dealing with unknown dynamics.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX