Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
North Pacific basin-scale differences in lower and higher trophic level marine ecosystem responses to climate impacts using a nutrient-phytoplankton–zooplankton model coupled to a fish bioenergetics model
We present a modeling approach where we use one common model formulation of a 11 state variable lower trophic level model that includes two groups of phytoplankton, three groups of zooplankton, and representations of nitrogen and silicate embedded in a three-dimensional ocean general circulation model (OGCM) and forced with a common climate forcing. Results are applied to a fish bioenergetics model for two geographically distinct ocean regions off Japan including the Oyashio, mixed, and Kuroshio subregions and off California including the subarctic, transition and subtropical subregions. The model is applied to two fish species (Pacific saury:
Cololabis saira and Pacific herring:
Clupea harengus pallasi) with different life histories in each region and the influence of three different “regime shift” periods was explored. With this approach, we narrow the observed biological response and model dynamics to reflect local conditions and eliminate differences related to the model formulations in each region. In general, the trend in temperature was negatively correlated with trends in the zooplankton community. Out-of-phase herring growth trends were observed between the Japan and California regions (
r
=
−0.259,
p
=
0.02). In-phase growth trends between herring and saury were observed at the California region (
r
=
0.61,
p
<
0.01). We did note some evidence of a basin-scale PDO mode response. During 1980–1985, simulated saury and herring in both regions showed a consistent increase in weight-at-age. In the Oyashio subregion, temperature decreased and all three zooplankton groups increased beginning around 1980. The same pattern of a decrease in temperature and an increase in zooplankton densities was observed between 1980 and 1985 in the subarctic subregion of California. Results are discussed in the context of ecosystem-based fisheries management.