Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
The Atmospherically Important Reaction of Hydroxyl Radicals with Methyl Nitrate: A Theoretical Study Involving the Calculation of Reaction Mechanisms, Enthalpies, Activation Energies, and Rate Coefficients
Ist Teil von
The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2017-09, Vol.121 (35), p.6554-6567
Ort / Verlag
United States: American Chemical Society
Erscheinungsjahr
2017
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
A theoretical study, involving the calculation of reaction enthalpies, activation energies, mechanisms, and rate coefficients, was made of the reaction of hydroxyl radicals with methyl nitrate, an important process for methyl nitrate removal in the earth’s atmosphere. Four reaction channels were considered: formation of H2O + CH2ONO2, CH3OOH + NO2, CH3OH + NO3, and CH3O + HNO3. For all channels, geometry optimization and frequency calculations were performed at the M06-2X/6-31+G** level, while relative energies were improved at the UCCSD(T*)-F12/CBS level. The major channel is found to be the H abstraction channel, to give the products H2O + CH2ONO2. The reaction enthalpy (ΔH 298 K RX) of this channel is computed as −17.90 kcal mol–1. Although the other reaction channels are also exothermic, their reaction barriers are high (>24 kcal mol–1), and therefore these reactions do not contribute to the overall rate coefficient in the temperature range considered (200–400 K). Pathways via three transition states were identified for the H abstraction channel. Rate coefficients were calculated for these pathways at various levels of variational transition state theory including tunneling. The results obtained are used to distinguish between two sets of experimental rate coefficients, measured in the temperature range of 200–400 K, one of which is approximately an order of magnitude greater than the other. This comparison, as well as the temperature dependence of the computed rate coefficients, shows that the lower experimental values are favored. The implications of the results to atmospheric chemistry are discussed.
Sprache
Englisch
Identifikatoren
ISSN: 1089-5639
eISSN: 1520-5215
DOI: 10.1021/acs.jpca.7b05035
Titel-ID: cdi_proquest_miscellaneous_1927835754
Format
–
Weiterführende Literatur
Empfehlungen zum selben Thema automatisch vorgeschlagen von bX