Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
IEEE transaction on neural networks and learning systems, 2018-01, Vol.29 (1), p.10-24
2018
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Broad Learning System: An Effective and Efficient Incremental Learning System Without the Need for Deep Architecture
Ist Teil von
  • IEEE transaction on neural networks and learning systems, 2018-01, Vol.29 (1), p.10-24
Ort / Verlag
United States: IEEE
Erscheinungsjahr
2018
Quelle
IEEE Electronic Library Online
Beschreibungen/Notizen
  • Broad Learning System (BLS) that aims to offer an alternative way of learning in deep structure is proposed in this paper. Deep structure and learning suffer from a time-consuming training process because of a large number of connecting parameters in filters and layers. Moreover, it encounters a complete retraining process if the structure is not sufficient to model the system. The BLS is established in the form of a flat network, where the original inputs are transferred and placed as "mapped features" in feature nodes and the structure is expanded in wide sense in the "enhancement nodes." The incremental learning algorithms are developed for fast remodeling in broad expansion without a retraining process if the network deems to be expanded. Two incremental learning algorithms are given for both the increment of the feature nodes (or filters in deep structure) and the increment of the enhancement nodes. The designed model and algorithms are very versatile for selecting a model rapidly. In addition, another incremental learning is developed for a system that has been modeled encounters a new incoming input. Specifically, the system can be remodeled in an incremental way without the entire retraining from the beginning. Satisfactory result for model reduction using singular value decomposition is conducted to simplify the final structure. Compared with existing deep neural networks, experimental results on the Modified National Institute of Standards and Technology database and NYU NORB object recognition dataset benchmark data demonstrate the effectiveness of the proposed BLS.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX