Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 24 von 204

Details

Autor(en) / Beteiligte
Titel
Impact of upstream river inputs and reservoir operation on phosphorus fractions in water-particulate phases in the Three Gorges Reservoir
Ist Teil von
  • The Science of the total environment, 2018-01, Vol.610-611, p.1546-1556
Ort / Verlag
Netherlands: Elsevier B.V
Erscheinungsjahr
2018
Link zum Volltext
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • The impoundment of the Three Gorges Reservoir (TGR) has changed water-sand transport regime, with inevitable effects on phosphorus transport behavior in the TGR. In this study, we measured phosphorus fractions in water and suspended particles transported from upstream rivers of the TGR (the Yangtze River, the Jialing River and the Wu River) to reservoir inner region over the full operation schedule of the TGR. The aim was to determine how phosphorus fractions in water and particulate phases varied in response to natural hydrological processes and reservoir operations. The results showed that total phosphorus concentration (TP) in water in the TGR inner region was 0.17±0.05mg/L, which was lower than that in the Yangtze River (0.21±0.04mg/L) and the Wu River (0.23±0.03mg/L), but higher than that in the Jialing River (0.12±0.07mg/L). In the TGR inner region, there was no clear trend of total dissolved phosphorus (TDP), but total particulate phosphorus (TPP) showed a decreasing trend from tail area to head area because of particle deposition along the TGR mainstream. In addition, the concentrations of TPP in water and particulate phosphorus in a unit mass of suspended particles (PP) in the TGR inner region were higher in October 2014 and January 2015 (the impounding period and high water level period) than that in July 2015 (the low water level period). The temporal variations of PP and TPP concentrations in the TGR may be linked to the change of particle size distribution of suspended particles in the TGR. The particle size tended to be finer due to large-size particle deposition under stable hydrodynamic conditions in the process of TGR impoundment, resulting in high adsorption capacities of phosphorus in suspended particles. The results implied that phosphorus temporal variations in the TGR could exert different impacts on water quality in the TGR tributaries. A simplified model showing effects of upstream river inputs and reservoir operation on phosphorus temporal variations in the TGR. [Display omitted] •Phosphorus fractions in water-particulate phases were observed over the full scheduled operations.•Phosphorus fraction concentrations showed significantly spatial-temporal variations in the TGR.•The differences of upstream river inputs affected phosphorus fraction allocation in the TGR.•Upstream river inputs and reservoir operation affected phosphorus temporal variations in the TGR.
Sprache
Englisch
Identifikatoren
ISSN: 0048-9697
eISSN: 1879-1026
DOI: 10.1016/j.scitotenv.2017.06.109
Titel-ID: cdi_proquest_miscellaneous_1913397087

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX