Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 4 von 3651

Details

Autor(en) / Beteiligte
Titel
Structurally and Functionally Optimized Silk‐Fibroin–Gelatin Scaffold Using 3D Printing to Repair Cartilage Injury In Vitro and In Vivo
Ist Teil von
  • Advanced materials (Weinheim), 2017-08, Vol.29 (29), p.n/a
Ort / Verlag
Germany: Wiley Subscription Services, Inc
Erscheinungsjahr
2017
Quelle
Wiley-Blackwell Journals
Beschreibungen/Notizen
  • Articular cartilage repair remains a great challenge for clinicians and researchers. Recently, there emerges a promising way to achieve one‐step cartilage repair in situ by combining endogenic bone marrow stem cells (BMSCs) with suitable biomaterials using a tissue engineering technique. To meet the increasing demand for cartilage tissue engineering, a structurally and functionally optimized scaffold is designed, by integrating silk fibroin with gelatin in combination with BMSC‐specific‐affinity peptide using 3D printing (3DP) technology. The combination ratio of silk fibroin and gelatin greatly balances the mechanical properties and degradation rate to match the newly formed cartilage. This dually optimized scaffold has shown superior performance for cartilage repair in a knee joint because it not only retains adequate BMSCs, due to efficient recruiting ability, and acts as a physical barrier for blood clots, but also provides a mechanical protection before neocartilage formation and a suitable 3D microenvironment for BMSC proliferation, differentiation, and extracellular matrix production. It appears to be a promising biomaterial for knee cartilage repair and is worthy of further investigation in large animal studies and preclinical applications. Beyond knee cartilage, this dually optimized scaffold may also serve as an ideal biomaterial for the regeneration of other joint cartilages. A structurally and functionally optimized scaffold is designed for knee cartilage regeneration by integrating silk fibroin with gelatin in combination with bone‐marrow‐stem‐cell (BMSC)‐specific‐affinity peptide using 3D printing technology. This dually optimized scaffold can efficiently recruit endogenic BMSCs and provide a suitable microenvironment for neocartilage formation, thus successfully achieving regeneration of cartilage in a knee joint.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX