Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Cost of glandular trichomes, a "resistance" character in Datura wrightii Regel (Solanaceae)
Ist Teil von
Evolution, 1999-02, Vol.53 (1), p.22-35
Ort / Verlag
United States: Society for the Study of Evolution
Erscheinungsjahr
1999
Quelle
Wiley Online Library Journals Frontfile Complete
Beschreibungen/Notizen
Models regarding the evolution of plant resistance to herbivory often assume that the primary mechanism maintaining resistance polymorphisms is the balance between benefits of increased resistance to herbivores and costs associated with the production of a resistance character. However, rarely has it been demonstrated that genetically based resistance traits are costly. Here, we document costs associated with the production of glandular trichomes, a resistance character in Datura wrightii that is predominantly under the control of a single gene of large effect. In the absence of herbivores, plants with glandular trichomes (sticky) produced 45% fewer viable seeds than plants with nonglandular trichomes (velvety). Although both plant types flowered with similar frequency, sticky plants matured fewer capsules and fewer of their seeds germinated. The fitness difference between the types in herbivore-free conditions was not mitigated by the addition of water, a potentially limiting resource for sticky plants. Under herbivore pressure, there was no significant fitness difference between the types, although the fitness of velvety plants was still higher than that of sticky plants. This occurred even though velvety plants sustained more herbivore damage than sticky plants and were more likely to be attacked by most herbivore species present. The fitness difference between the plant types was especially reduced when herbivore-attacked plants were watered, which indicates that sticky plants may have higher tolerance for damage than velvety plants when supplied with a potentially limiting resource. Yet, the maintenance of a fitness deficit (albeit small and nonsignificant) for sticky plants when attacked by herbivores indicates no net benefit associated with the production of glandular trichomes in this first year of our study. These results add to our current understanding that herbivore resistance characters can be costly and raise the question of how this genetic polymorphism is maintained in wild populations.