Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 16 von 340

Details

Autor(en) / Beteiligte
Titel
High‐Performance Piezoelectric Nanogenerators with Imprinted P(VDF‐TrFE)/BaTiO3 Nanocomposite Micropillars for Self‐Powered Flexible Sensors
Ist Teil von
  • Small (Weinheim an der Bergstrasse, Germany), 2017-06, Vol.13 (23), p.n/a
Ort / Verlag
Weinheim: Wiley Subscription Services, Inc
Erscheinungsjahr
2017
Quelle
Wiley Online Library All Journals
Beschreibungen/Notizen
  • Piezoelectric nanogenerators with large output, high sensitivity, and good flexibility have attracted extensive interest in wearable electronics and personal healthcare. In this paper, the authors propose a high‐performance flexible piezoelectric nanogenerator based on piezoelectrically enhanced nanocomposite micropillar array of polyvinylidene fluoride‐trifluoroethylene (P(VDF‐TrFE))/barium titanate (BaTiO3) for energy harvesting and highly sensitive self‐powered sensing. By a reliable and scalable nanoimprinting process, the piezoelectrically enhanced vertically aligned P(VDF‐TrFE)/BaTiO3 nanocomposite micropillar arrays are fabricated. The piezoelectric device exhibits enhanced voltage of 13.2 V and a current density of 0.33 µA cm−2, which an enhancement by a factor of 7.3 relatives to the pristine P(VDF‐TrFE) bulk film. The mechanisms of high performance are mainly attributed to the enhanced piezoelectricity of the P(VDF‐TrFE)/BaTiO3 nanocomposite materials and the improved mechanical flexibility of the micropillar array. Under mechanical impact, stable electricity is stably generated from the nanogenerator and used to drive various electronic devices to work continuously, implying its significance in the field of consumer electronic devices. Furthermore, it can be applied as self‐powered flexible sensor work in a noncontact mode for detecting air pressure and wearable sensors for detecting some human vital signs including different modes of breath and heartbeat pulse, which shows its potential applications in flexible electronics and medical sciences. A scalable nanoimprinting process is used to fabricate a high‐performance flexible piezoelectric nanogenerator made of piezoelectrically enhanced polyvinylidene fluoride‐trifluoroethylene/barium titanate nanocomposite micropillar array, which can turn on various consumer electronics devices and can be demonstrated as self‐powered flexible sensors for detecting air pressure/flow and some human vital signs such as breath and heartbeat pulse.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX