UNIVERSI
TÄ
TS-
BIBLIOTHEK
P
ADERBORN
Anmelden
Menü
Menü
Start
Hilfe
Blog
Weitere Dienste
Neuerwerbungslisten
Fachsystematik Bücher
Erwerbungsvorschlag
Bestellung aus dem Magazin
Fernleihe
Einstellungen
Sprache
Deutsch
Deutsch
Englisch
Farbschema
Hell
Dunkel
Automatisch
Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist
gegebenenfalls
nur via VPN oder Shibboleth (DFN-AAI) möglich.
mehr Informationen...
Universitätsbibliothek
Katalog
Suche
Details
Zur Ergebnisliste
Ergebnis 22 von 184
Datensatz exportieren als...
BibTeX
Experimental study of water fluxes in a residential area: 1. Rainfall, roof runoff and evaporation: the effect of slope and aspect
Hydrological processes, 2003-08, Vol.17 (12), p.2409-2422
Ragab, R.
Bromley, J.
Rosier, P.
Cooper, J. D.
Gash, J. H. C.
2003
Volltextzugriff (PDF)
Details
Autor(en) / Beteiligte
Ragab, R.
Bromley, J.
Rosier, P.
Cooper, J. D.
Gash, J. H. C.
Titel
Experimental study of water fluxes in a residential area: 1. Rainfall, roof runoff and evaporation: the effect of slope and aspect
Ist Teil von
Hydrological processes, 2003-08, Vol.17 (12), p.2409-2422
Ort / Verlag
Chichester, UK: John Wiley & Sons, Ltd
Erscheinungsjahr
2003
Quelle
Wiley Online Library Journals【Remote access available】
Beschreibungen/Notizen
An experimental study of water fluxes from roofs in a residential area has quantified water fluxes from different types of roof and identified the major controls on the process. Roofs with pitches of 0°, 22° and 50° and orientations of 15° (from true north) (NNE) and 103° (ESE) were selected. A novel automatic system for monitoring has been developed. Noticeable differences in rainfall, runoff and evaporation were found for different roof slopes, aspects and heights. Depending on height, flat roofs collected 90 to 99% of rainfall recorded at ground level. Roofs with a 22° slope; facing south‐south‐west (i.e. facing the prevailing wind) captured most rain, whereas east‐south‐east facing roofs with slopes of 50° received the least. Depending on the roof slope, the average rainfall captured ranged from 62 to 93% of that at ground level. For the same slope, the results indicated that from roofs orientated normal to the prevailing wind; (i) captured rainfall was higher, (ii) evaporation was higher and (iii) runoff was less than that from roofs having other aspects. Monthly variations in the runoff–rainfall ratio followed the rainfall distribution, being lowest in summer and highest in winter. The highest mean ratio (0·91) was associated with the steeper roof slope; the lowest ratio (0·61) was for roofs facing the prevailing wind direction. For the same amount of rainfall, the runoff generated from a steeper roof was significantly higher than that generated by a moderate roof slope, but the lowest runoff was from roofs facing the prevailing wind. The results have also shown that the amount of runoff collected (under UK climatic condition) was sufficient to supply an average household in the studied area with the major part of its annual water requirements. The use of this water not only represents a financial gain for house owners but also will help protect the environment by reducing demand on water resources through the reduction of groundwater ion, construction of new reservoirs, and a reduction of the flood risk as its in situ use is considered a preventive measure known as a source control. Copyright © 2003 John Wiley & Sons, Ltd.
Sprache
Englisch
Identifikatoren
ISSN: 0885-6087
eISSN: 1099-1085
DOI: 10.1002/hyp.1250
Titel-ID: cdi_proquest_miscellaneous_18927592
Format
–
Schlagworte
aspect
,
Earth sciences
,
Earth, ocean, space
,
evaporation
,
Exact sciences and technology
,
height
,
Hydrology
,
Hydrology. Hydrogeology
,
rainfall
,
residential areas
,
Roof runoff
,
slope
,
urban hydrology
,
water recycle
Weiterführende Literatur
Empfehlungen zum selben Thema automatisch vorgeschlagen von
bX