Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 23 von 82
Journal of geophysical research. Atmospheres, 2017-02, Vol.122 (3), p.1488-1504
2017

Details

Autor(en) / Beteiligte
Titel
Assessment of Noah land surface model with various runoff parameterizations over a Tibetan river
Ist Teil von
  • Journal of geophysical research. Atmospheres, 2017-02, Vol.122 (3), p.1488-1504
Ort / Verlag
Washington: Blackwell Publishing Ltd
Erscheinungsjahr
2017
Link zum Volltext
Quelle
Wiley Online Library Journals Frontfile Complete
Beschreibungen/Notizen
  • Runoff parameterizations currently adopted by the (i) Noah‐MP model, (ii) Community Land Model (CLM), and (iii) CLM with variable infiltration capacity hydrology (CLM‐VIC) are incorporated into the structure of Noah land surface model, and the impact of these parameterizations on the runoff simulations is investigated for a Tibetan river. Four numerical experiments are conducted with the default Noah and three aforementioned runoff parameterizations. Each experiment is forced with the same set of atmospheric forcing, vegetation, and soil parameters. In addition, the Community Earth System Model database provides the maximum surface saturated area parameter for the Noah‐MP and CLM parameterizations. A single‐year recurrent spin‐up is adopted for the initialization of each model run to achieve equilibrium states. Comparison with discharge measurements shows that each runoff parameterization produces significant differences in the separation of total runoff into surface and subsurface components and that the soil water storage‐based parameterizations (Noah and CLM‐VIC) outperform the groundwater table‐based parameterizations (Noah‐MP and CLM) for the seasonally frozen and high‐altitude Tibetan river. A parameter sensitivity experiment illustrates that this underperformance of the groundwater table‐based parameterizations cannot be resolved through calibration. Further analyses demonstrate that the simulations of other surface water and energy budget components are insensitive to the selected runoff parameterizations, due to the strong control of the atmosphere on simulated land surface fluxes induced by the diurnal dependence of the roughness length for heat transfer and the large water retention capacity of the highly organic top soils over the plateau. Key Points Runoff parameterizations adopted by Noah, Noah‐MP, CLM, and CLM‐VIC are evaluated for the seasonally frozen Yellow River source region Soil water storage‐based runoff schemes perform much better than groundwater table‐based parameterizations for the Tibetan river Surface water and energy budget simulations are insensitive to the selected runoff scheme

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX