UNIVERSI
TÄ
TS-
BIBLIOTHEK
P
ADERBORN
Anmelden
Menü
Menü
Start
Hilfe
Blog
Weitere Dienste
Neuerwerbungslisten
Fachsystematik Bücher
Erwerbungsvorschlag
Bestellung aus dem Magazin
Fernleihe
Einstellungen
Sprache
Deutsch
Deutsch
Englisch
Farbschema
Hell
Dunkel
Automatisch
Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist
gegebenenfalls
nur via VPN oder Shibboleth (DFN-AAI) möglich.
mehr Informationen...
Universitätsbibliothek
Katalog
Suche
Details
Zur Ergebnisliste
Ergebnis 12 von 735
Datensatz exportieren als...
BibTeX
An efficient metamodeling approach for uncertainty quantification of complex systems with arbitrary parameter probability distributions
International journal for numerical methods in engineering, 2017-02, Vol.109 (5), p.739-760
Wan, Hua‐Ping
Ren, Wei‐Xin
Todd, Michael D.
2017
Volltextzugriff (PDF)
Details
Autor(en) / Beteiligte
Wan, Hua‐Ping
Ren, Wei‐Xin
Todd, Michael D.
Titel
An efficient metamodeling approach for uncertainty quantification of complex systems with arbitrary parameter probability distributions
Ist Teil von
International journal for numerical methods in engineering, 2017-02, Vol.109 (5), p.739-760
Ort / Verlag
Bognor Regis: Wiley Subscription Services, Inc
Erscheinungsjahr
2017
Quelle
Wiley Online Library
Beschreibungen/Notizen
Summary This paper proposes an efficient metamodeling approach for uncertainty quantification of complex system based on Gaussian process model (GPM). The proposed GPM‐based method is able to efficiently and accurately calculate the mean and variance of model outputs with uncertain parameters specified by arbitrary probability distributions. Because of the use of GPM, the closed form expressions of mean and variance can be derived by decomposing high‐dimensional integrals into one‐dimensional integrals. This paper details on how to efficiently compute the one‐dimensional integrals. When the parameters are either uniformly or normally distributed, the one‐dimensional integrals can be analytically evaluated, while when parameters do not follow normal or uniform distributions, this paper adopts the effective Gaussian quadrature technique for the fast computation of the one‐dimensional integrals. As a result, the developed GPM method is able to calculate mean and variance of model outputs in an efficient manner independent of parameter distributions. The proposed GPM method is applied to a collection of examples. And its accuracy and efficiency is compared with Monte Carlo simulation, which is used as benchmark solution. Results show that the proposed GPM method is feasible and reliable for efficient uncertainty quantification of complex systems in terms of the computational accuracy and efficiency. Copyright © 2016 John Wiley & Sons, Ltd.
Sprache
Englisch
Identifikatoren
ISSN: 0029-5981
eISSN: 1097-0207
DOI: 10.1002/nme.5305
Titel-ID: cdi_proquest_miscellaneous_1880031452
Format
–
Schlagworte
arbitrary probability distribution
,
Complex systems
,
Computer simulation
,
Gaussian process model
,
Gaussian quadrature
,
Integrals
,
Mathematical analysis
,
Mathematical models
,
parameter uncertainty
,
Parameters
,
Uncertainty
,
uncertainty quantification
,
Variance
Weiterführende Literatur
Empfehlungen zum selben Thema automatisch vorgeschlagen von
bX