Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 12 von 735
International journal for numerical methods in engineering, 2017-02, Vol.109 (5), p.739-760
2017
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
An efficient metamodeling approach for uncertainty quantification of complex systems with arbitrary parameter probability distributions
Ist Teil von
  • International journal for numerical methods in engineering, 2017-02, Vol.109 (5), p.739-760
Ort / Verlag
Bognor Regis: Wiley Subscription Services, Inc
Erscheinungsjahr
2017
Quelle
Wiley Online Library
Beschreibungen/Notizen
  • Summary This paper proposes an efficient metamodeling approach for uncertainty quantification of complex system based on Gaussian process model (GPM). The proposed GPM‐based method is able to efficiently and accurately calculate the mean and variance of model outputs with uncertain parameters specified by arbitrary probability distributions. Because of the use of GPM, the closed form expressions of mean and variance can be derived by decomposing high‐dimensional integrals into one‐dimensional integrals. This paper details on how to efficiently compute the one‐dimensional integrals. When the parameters are either uniformly or normally distributed, the one‐dimensional integrals can be analytically evaluated, while when parameters do not follow normal or uniform distributions, this paper adopts the effective Gaussian quadrature technique for the fast computation of the one‐dimensional integrals. As a result, the developed GPM method is able to calculate mean and variance of model outputs in an efficient manner independent of parameter distributions. The proposed GPM method is applied to a collection of examples. And its accuracy and efficiency is compared with Monte Carlo simulation, which is used as benchmark solution. Results show that the proposed GPM method is feasible and reliable for efficient uncertainty quantification of complex systems in terms of the computational accuracy and efficiency. Copyright © 2016 John Wiley & Sons, Ltd.
Sprache
Englisch
Identifikatoren
ISSN: 0029-5981
eISSN: 1097-0207
DOI: 10.1002/nme.5305
Titel-ID: cdi_proquest_miscellaneous_1880031452

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX