Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
An evaluation of the migration of antimony from polyethylene terephthalate (PET) plastic used for bottled drinking water
Ist Teil von
The Science of the total environment, 2016-09, Vol.565, p.511-518
Ort / Verlag
Netherlands: Elsevier B.V
Erscheinungsjahr
2016
Quelle
MEDLINE
Beschreibungen/Notizen
The leaching of antimony (Sb) from polyethylene terephthalate (PET) bottling material was assessed in twelve brands of bottled water purchased in Mexican supermarkets by atomic fluorescence spectrometry with a hydride generation system (HG-AFS). Dowex® 1X8-100 ion-exchange resin was used to preconcentrate trace amounts of Sb in water samples. Migration experiments from the PET bottle material were performed in water according to the following storage conditions: 1) temperature (25 and 75°C), 2) pH (3 and 7) and 3) exposure time (5 and 15days), using ultrapure water as a simulant for liquid foods. The test conditions were studied by a 23 factorial experimental design. The Sb concentration measured in the PET packaging materials varied between 73.0 and 111.3mg/kg. The Sb concentration (0.28–2.30μg/L) in all of the PET bottled drinking water samples examined at the initial stage of the study was below the maximum contaminant level of 5μg/L prescribed by European Union (EU) regulations. The parameters studied (pH, temperature, and storage time) significantly affected the release of Sb, with temperature having the highest positive significant effect within the studied experimental domain. The highest Sb concentration leached from PET containers was in water samples at pH7 stored at 75°C for a period of 5days. The extent of Sb leaching from the PET ingredients for different brands of drinking water can differ by as much as one order of magnitude in experiments conducted under the worst-case conditions. The chronic daily intake (CDI) caused by the release of Sb in one brand exceeded the Environmental Protection Agency (USEPA) regulated CDI value of 400ng/kg/day, with values of 514.3 and 566.2ng/kg/day for adults and children. Thus, the appropriate selection of the polymer used for the production of PET bottles seems to ensure low Sb levels in water samples.
[Display omitted]
•The PET safety due to the release of Sb was evaluated in Mexican water PET bottles•The temperature was the main factor that affected the Sb release from PET samples•The highest amount of Sb leached was at pH 7 stored at 75°C for 5days•PET quality could affect the extent of Sb leaching under the worst case conditions•The EPA Sb chronic daily intake was exceeded under the worst case conditions