Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 8 von 15

Details

Autor(en) / Beteiligte
Titel
Recognition memory for low- and high-frequency-filtered emotional faces: Low spatial frequencies drive emotional memory enhancement, whereas high spatial frequencies drive the emotion-induced recognition bias
Ist Teil von
  • Memory & cognition, 2017-07, Vol.45 (5), p.699-715
Ort / Verlag
New York: Springer US
Erscheinungsjahr
2017
Link zum Volltext
Quelle
EBSCOhost Business Source Ultimate
Beschreibungen/Notizen
  • This article deals with two well-documented phenomena regarding emotional stimuli: emotional memory enhancement—that is, better long-term memory for emotional than for neutral stimuli—and the emotion-induced recognition bias—that is, a more liberal response criterion for emotional than for neutral stimuli. Studies on visual emotion perception and attention suggest that emotion-related processes can be modulated by means of spatial-frequency filtering of the presented emotional stimuli. Specifically, low spatial frequencies are assumed to play a primary role for the influence of emotion on attention and judgment. Given this theoretical background, we investigated whether spatial-frequency filtering also impacts (1) the memory advantage for emotional faces and (2) the emotion-induced recognition bias, in a series of old/new recognition experiments. Participants completed incidental-learning tasks with high- (HSF) and low- (LSF) spatial-frequency-filtered emotional and neutral faces. The results of the surprise recognition tests showed a clear memory advantage for emotional stimuli. Most importantly, the emotional memory enhancement was significantly larger for face images containing only low-frequency information (LSF faces) than for HSF faces across all experiments, suggesting that LSF information plays a critical role in this effect, whereas the emotion-induced recognition bias was found only for HSF stimuli. We discuss our findings in terms of both the traditional account of different processing pathways for HSF and LSF information and a stimulus features account. The double dissociation in the results favors the latter account—that is, an explanation in terms of differences in the characteristics of HSF and LSF stimuli.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX