Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
An individual-based model of cyclic development of Cladocera populations was developed on the basis of experimental data. The model takes into account the following processes describing the development of an individual animal: maturation, transition into other reproductive classes, selection of the reproduction mode (parthenogenetic or gamogenetic), release of parthenogenetic progeny and death. The model assumes that switching from asexual to sexual reproduction is controlled by the concentration of food and metabolic by-products of the animal population. Verification of the model by independent experiments demonstrated that (1) during population growth, metabolic by-products build up in the medium, and (2) the effect of metabolic by-products on gamogenesis induction depends on concentration. The hypothesis that the effect of regulating reproductive switching factors should synchronise the development of population with the change of environmental conditions in order to ensure production of the maximum number of diapausing eggs was tested. It is shown that combination of regulating reproductive switching factors maximises the production of diapausing eggs.