Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 1 von 12

Details

Autor(en) / Beteiligte
Titel
Clouds and hazes vertical structure of a Saturn's giant vortex from Cassini/VIMS-V data analysis
Ist Teil von
  • Icarus (New York, N.Y. 1962), 2016-11, Vol.278, p.215-237
Ort / Verlag
Elsevier Inc
Erscheinungsjahr
2016
Link zum Volltext
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • •We developed a forward radiative transfer model to describe Saturn's atmosphere.•We developed an inversion algorithm to retrieve clouds properties from VIMS-V data.•We verified that no NH3 ice cloud is needed to reproduce the vortex spectra.•We propose a spectral modification of the tropospheric haze refractive index.•We infer that the atmospheric dynamics in the vortex region is weakening. We studied the evolution of a giant tropospheric vortex formed in the wake of the storm that encircled Saturn from December 2010 to July 2011 (Fletcher et al. [2011a] Science, 332, 1413–1417; Fletcher et al. [2012] Icarus, 221, 560–586; Sánchez-Lavega et al. [2011] Nature, 475, 71–74; Sánchez-Lavega et al. [2012] Icarus, 220, 561–576; Sayanagi et al. [2013] Icarus, 223, 460–478; Fischer et al. [2011] Nature, 475, 75–77) taking advantage of the observations acquired by the instruments on board the Cassini spacecraft. In particular, the Visual and Infrared Mapping Spectrometer (VIMS) imaged the vortex several times. In this work we analyzed two observations registered by the visual channel of VIMS (VIMS-V) on 08/24/2011 and 01/04/2012, both after the active phase of the storm, and characterized quantitatively the vertical structure of the clouds and hazes above the vortex. Until now, VIMS-V dataset has been scarcely exploited to perform such an analysis. The IR channel of VIMS has always been preferred since it covers wavelengths containing spectral information on a wider range of altitudes in the atmosphere. Nevertheless, in our analysis we investigate the information content of VIMS-V observations and demonstrate that the covered spectral range contains valuable information that are helpful to improve our knowledge on the properties of Saturn's upper atmosphere. We developed a forward radiative transfer model to describe Saturn's atmosphere and simulate VIMS-V spectra in the 0.35–1.05µm wavelength range. The analysis has then been performed by means of an inverse model that we built on the basis of the Bayesian approach. Spatial distributions of effective radii, column number densities and top pressures of the cloud decks have been mapped and as a by-product of our analysis we also suggest a modified spectral shape for the imaginary part of the refractive index of the tropospheric haze, with respect to the shape described in the study of Karkoschka and Tomasko ([2005] Icarus, 179, 195–221). The results suggest that the processes responsible for the formation and persistence of the vortex weakened between August 2011 and January 2012, even if the differences that we observe could be due to the fact that the vortex has moved in different positions between the two dates. We found that in August 2011 the upper haze was arranged in a dome like structure with the center at 8mbar and the boundaries at 12mbar; moreover we detected a zone in the lower haze at 135mbar characterized by higher optical thickness with respect to the surrounding regions located at 85mbar. In January 2012 the dome in the upper layer has diluted into a more homogeneous structure and the haze appears to be overall shifted to less than 6mbar. Similarly, the 135mbar high optical depth zone previously detected in the lower layer has disappeared.
Sprache
Englisch
Identifikatoren
ISSN: 0019-1035
eISSN: 1090-2643
DOI: 10.1016/j.icarus.2016.06.021
Titel-ID: cdi_proquest_miscellaneous_1835635363

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX