Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Here, a simple combined strategy of surface wrinkling with visible light irradiation to fabricate well tunable hierarchical surface patterns on azo‐containing multilayer films is reported. The key to tailor surface patterns is to introduce a photosensitive poly(disperse orange 3) intermediate layer into the film/substrate wrinkling system, in which the modulus decrease is induced by the reversible photoisomerization. The existence of a photoinert top layer prevents the photoisomerization‐induced stress release in the intermediate layer to some extent. Consequently, the as‐formed wrinkling patterns can be modulated over a large area by light irradiation. Interestingly, in the case of selective exposure, the wrinkle wavelength in the exposed region decreases, while the wrinkles in the unexposed region are evolved into highly oriented wrinkles with the orientation perpendicular to the exposed/unexposed boundary. Compared with traditional single layer‐based film/substrate systems, the multilayer system consisting of the photosensitive intermediate layer offers unprecedented advantages in the patterning controllability/universality. As demonstrated here, this simple and versatile strategy can be conveniently extended to functional multilayer systems for the creation of prescribed hierarchical surface patterns with optically tailored microstructures.
A visible light‐responsive multilayer system, with an azo‐containing polymer film as the intermediate layer has been developed for the controlled fabrication of the hierarchically patterned surfaces. It is based on the combined strategy of surface wrinkling with visible light irradiation. This study offers a new avenue to create micro/nano patterned surfaces on diverse functional films based on the stimuli‐responsive wrinkling‐based adaptive system.