UNIVERSI
TÄ
TS-
BIBLIOTHEK
P
ADERBORN
Anmelden
Menü
Menü
Start
Hilfe
Blog
Weitere Dienste
Neuerwerbungslisten
Fachsystematik Bücher
Erwerbungsvorschlag
Bestellung aus dem Magazin
Fernleihe
Einstellungen
Sprache
Deutsch
Deutsch
Englisch
Farbschema
Hell
Dunkel
Automatisch
Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist
gegebenenfalls
nur via VPN oder Shibboleth (DFN-AAI) möglich.
mehr Informationen...
Universitätsbibliothek
Katalog
Suche
Details
Zur Ergebnisliste
Ergebnis 8 von 2574
Datensatz exportieren als...
BibTeX
Powell-Sabin B-splines and unstructured standard T-splines for the solution of the Kirchhoff-Love plate theory exploiting Bézier extraction
International journal for numerical methods in engineering, 2016-07, Vol.107 (3), p.205-233
May, Stefan
Vignollet, Julien
Borst, René de
2016
Volltextzugriff (PDF)
Details
Autor(en) / Beteiligte
May, Stefan
Vignollet, Julien
Borst, René de
Titel
Powell-Sabin B-splines and unstructured standard T-splines for the solution of the Kirchhoff-Love plate theory exploiting Bézier extraction
Ist Teil von
International journal for numerical methods in engineering, 2016-07, Vol.107 (3), p.205-233
Ort / Verlag
Bognor Regis: Blackwell Publishing Ltd
Erscheinungsjahr
2016
Quelle
Wiley Online Library Journals Frontfile Complete
Beschreibungen/Notizen
Summary The equations that govern Kirchhoff–Love plate theory are solved using quadratic Powell–Sabin B‐splines and unstructured standard T‐splines. Bézier extraction is exploited to make the formulation computationally efficient. Because quadratic Powell–Sabin B‐splines result in CA1‐continuous shape functions, they are of sufficiently high continuity to capture Kirchhoff–Love plate theory when cast in a weak form. Unlike non‐uniform rational B‐splines (NURBS), which are commonly used in isogeometric analysis, Powell–Sabin B‐splines do not necessarily capture the geometry exactly. However, the fact that they are defined on triangles instead of on quadrilaterals increases their flexibility in meshing and can make them competitive with respect to NURBS, as no bending strip method for joined NURBS patches is needed. This paper further illustrates how unstructured T‐splines can be modified such that they are CA1‐continuous around extraordinary points, and that the blending functions fulfil the partition of unity property. The performance of quadratic NURBS, unstructured T‐splines, Powell–Sabin B‐splines and NURBS‐to‐NURPS (non‐uniform rational Powell–Sabin B‐splines, which are obtained by a transformation from a NURBS patch) is compared in a study of a circular plate. Copyright © 2015 John Wiley & Sons, Ltd.
Sprache
Englisch
Identifikatoren
ISSN: 0029-5981
eISSN: 1097-0207
DOI: 10.1002/nme.5163
Titel-ID: cdi_proquest_miscellaneous_1825512999
Format
–
Schlagworte
Bezier
,
Bézier extraction
,
Extraction
,
isogeometric analysis
,
Mathematical analysis
,
Mathematical models
,
Meshing
,
NURBS
,
NURBS-to-NURPS
,
Plate theory
,
Powell-Sabin B-splines
,
Shape functions
,
unstructured T-splines
Weiterführende Literatur
Empfehlungen zum selben Thema automatisch vorgeschlagen von
bX