Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Propargyl Vinyl Ethers and Tertiary Skipped Diynes: Two Pluripotent Molecular Platforms for Diversity-Oriented Synthesis
Ist Teil von
Accounts of chemical research, 2016-04, Vol.49 (4), p.703-713
Ort / Verlag
United States: American Chemical Society
Erscheinungsjahr
2016
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
During the last years, we have been involved in the development of a diversity-oriented synthetic strategy aimed at transforming simple, linear, and densely functionalized molecular platforms into collections of topologically diverse scaffolds incorporating biologically relevant structural motifs such as N- and O- heterocycles, multifunctionalized aromatic rings, fused macrocycles, etc. The strategy merges the concepts of pluripotency (the property of an array of chemical functionalities to express different chemical outcomes under different chemical environments) and domino chemistry (chemistry based on processes involving two or more bond-forming transformations that take place while the initial reaction conditions are maintained, with the subsequent reaction resulting as a consequence of the functionality installed in the previous one) to transform common multifunctional substrates into complex and diverse molecular frameworks. This design concept constitutes the ethos of the so-called branching cascade strategy, a branch of diversity-oriented synthesis focused on scaffold diversity generation. Two pluripotent molecular platforms have been extensively studied under this merging (branching) paradigm: C4–O–C3 propargyl vinyl ethers (PVEs) and C7 tertiary skipped diynes (TSDs). These are conveniently constructed from simple and commercially available raw materials (alkyl propiolates, ketones, aldehydes, acid chlorides) through multicomponent manifolds (ABB′ three-component reaction for PVEs; A2BB′ four-component reaction for TSDs) or a simple two-step procedure (for PVEs). Their modular origin facilitates their structural/functional diversification without increasing the number of synthetic steps for their assembly. These two pluripotent molecular platforms accommodate a well-defined and dense array of through-bond/through-space interrelated functionalities on their structures, which defines their primary reactivity principles and establishes the reactivity profile. The PVEs are defined by the presence of an alkyne (alkynoate) function and a conjugated enol moiety and their mutual through-bond/through-space connectivity. This functional array accommodates a number of domino reactions launched either by a Michael addition on the alkynoate moiety (conjugated alkynes) or by a [3,3]-propargyl Claisen rearrangement (conjugated and nonconjugated alkynes). The reactivity profile of the TSDs is defined by the two connected alkynoate moieties (Michael addition) and the bispropargylic ester group ([3,3]-sigmatropic rearrangement). Using these first reactivity principles, each platform selectively delivers one unique and different skeleton (topology) from each domino transformation. Thus, through the use of 11 instrumentally simple and scalable domino reactions, we have transformed these two linear (rod-symmetric) pluripotent molecular platforms into 16 different scaffolds incorporating important structural motifs and multifunctional decorative patterns. The generated scaffolds entail carbocycles, heterocycles, aromatics, β,γ-unsaturated esters and acids, and fused polycycles. They can be transformed into more elaborated molecular skeletons by the use of chemical handles generated in their own domino reactions or by appending different functionalities to the pluripotent molecular platform (secondary reactivity principles).