Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 9 von 362
IEEE/ACM transactions on computational biology and bioinformatics, 2016-07, Vol.13 (4), p.669-677
2016
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Extracting Biomedical Event with Dual Decomposition Integrating Word Embeddings
Ist Teil von
  • IEEE/ACM transactions on computational biology and bioinformatics, 2016-07, Vol.13 (4), p.669-677
Ort / Verlag
United States: IEEE
Erscheinungsjahr
2016
Quelle
IEEE Electronic Library Online
Beschreibungen/Notizen
  • Extracting biomedical event from literatures has attracted much attention recently. By now, most of the state-of-the-art systems have been based on pipelines which suffer from cascading errors, and the words encoded by one-hot are unable to represent the semantic information. Joint inference with dual decomposition and novel word embeddings are adopted to address the two problems, respectively, in this work. Word embeddings are learnt from large scale unlabeled texts and integrated as an unsupervised feature into other rich features based on dependency parse graphs to detect triggers and arguments. The proposed system consists of four components: trigger detector, argument detector, jointly inference with dual decomposition, and rule-based semantic post-processing, and outperforms the state-of-the-art systems. On the development set of BioNLP'09, the F-score is 59.77 percent on the primary task, which is 0.96 percent higher than the best system. On the test set of BioNLP'11, the F-score is 56.09 and 0.89 percent higher than the best published result that do not adopt additional techniques. On the test set of BioNLP'13, the F-score reaches 53.19 percent which is 2.22 percent higher than the best result.
Sprache
Englisch
Identifikatoren
ISSN: 1545-5963
eISSN: 1557-9964
DOI: 10.1109/TCBB.2015.2476876
Titel-ID: cdi_proquest_miscellaneous_1811297740

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX