Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 13 von 15

Details

Autor(en) / Beteiligte
Titel
appraisal of carbon footprint of milk from commercial grass-based dairy farms in Ireland according to a certified life cycle assessment methodology
Ist Teil von
  • The international journal of life cycle assessment, 2014-08, Vol.19 (8), p.1469-1481
Ort / Verlag
Berlin/Heidelberg: Springer-Verlag
Erscheinungsjahr
2014
Link zum Volltext
Quelle
SpringerLink
Beschreibungen/Notizen
  • PURPOSE: Life cycle assessment (LCA) studies of carbon footprint (CF) of milk from grass-based farms are usually limited to small numbers of farms (<30) and rarely certified to international standards, e.g. British Standards Institute publicly available specification 2050 (PAS 2050). The goals of this study were to quantify CF of milk from a large sample of grass-based farms using an accredited PAS 2050 method and to assess the relationships between farm characteristics and CF of milk. MATERIALS AND METHODS: Data was collected annually using on-farm surveys, milk processor records and national livestock databases for 171 grass-based Irish dairy farms with information successfully obtained electronically from 124 farms and fed into a cradle to farm-gate LCA model. Greenhouse gas (GHG) emissions were estimated with the LCA model in CO₂ equivalents (CO₂-eq) and allocated economically between dairy farm products, except exported crops. Carbon footprint of milk was estimated by expressing GHG emissions attributed to milk per kilogram of fat and protein-corrected milk (FPCM). The Carbon Trust tested the LCA model for non-conformities with PAS 2050. PAS 2050 certification was achieved when non-conformities were fixed or where the effect of all unresolved non-conformities on CF of milk was < ±5 %. RESULTS AND DISCUSSION: The combined effect of LCA model non-conformities with PAS 2050 on CF of milk was <1 %. Consequently, PAS 2050 accreditation was granted. The mean certified CF of milk from grass-based farms was 1.11 kg of CO₂-eq/kg of FPCM, but varied from 0.87 to 1.72 kg of CO₂-eq/kg of FPCM. Although some farm attributes had stronger relationships with CF of milk than the others, no attribute accounted for the majority of variation between farms. However, CF of milk could be reasonably predicted using N efficiency, the length of the grazing season, milk yield/cow and annual replacement rate (R ² = 0.75). Management changes can be applied simultaneously to improve each of these traits. Thus, grass-based farmers can potentially significantly reduce CF of milk. CONCLUSIONS: The certification of an LCA model to PAS 2050 standards for grass-based dairy farms provides a verifiable approach to quantify CF of milk at a farm or national level. The application of the certified model highlighted a wide range between the CF of milk of commercial farms. However, differences between farms’ CF of milk were explained by variation in various aspects of farm performance. This implies that improving farm efficiency can mitigate CF of milk.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX