Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 3 von 18

Details

Autor(en) / Beteiligte
Titel
Microextraction versus exhaustive extraction approaches for simultaneous analysis of compounds in wide range of polarity
Ist Teil von
  • Journal of Chromatography A, 2013-11, Vol.1316, p.37-43
Ort / Verlag
Amsterdam: Elsevier B.V
Erscheinungsjahr
2013
Quelle
MEDLINE
Beschreibungen/Notizen
  • •Exhaustive and microextraction approaches were compared for simultaneous analysis of compounds of a wide range of polarities.•Extraction recoveries for both approaches were compared at low and high sample volumes.•The SPME and SPE approaches were compared in terms of breakthrough, efficiency and sensitivity.•Where the analytes vary substantially in polarity, sensitivity of SPME exceeds SPE.•SPME is beneficial for untargeted analysis where SPE’ breakthrough volume is unknown. This article discusses comparison of microextraction versus exhaustive extraction approaches for simultaneous extraction of compounds in wide range of polarity at low and high volumes of sample by comparing solid phase extraction (SPE) and solid phase microextraction (SPME). Here, both systems are discussed theoretically and evaluated based on experimental data. Experimental comparisons were conducted in terms of extraction recovery, sensitivity, and selectivity for the extraction of doping agent compounds (logP: 0.14–4.98), using C18 as the extraction phase. The extraction recovery of both systems was studied at different volumes of phosphate buffered saline (PBS). The distribution constant of SPME in thin-film geometry (i.e., thin-film microextraction/TFME) as well as the retention factor and breakthrough volume for the SPE system were evaluated for the simultaneous extraction of polar and non-polar compounds. Using 1mL of sample, the extraction recovery and sensitivity of the SPE system (100mg sorbent) was comparable with that of TFME format of SPME (15mg sorbent) for all analytes, with the exception of most polar compounds, due to the smaller amount of the extraction phase in SPME. Breakthrough in the SPE system was observed for more polar compounds in a 25mL sample; however, this situation did not affect the quantitation of TFME, as this technique operates in equilibrium mode. Experimental values for breakthrough volume were in good match with the calculated theoretical values. Results indicate that the microextraction approach is more suitable for untargeted determinations, where the breakthrough volume cannot be determined prior to the experiment. In addition, when both methods are at optimum conditions, findings suggest that, despite the smaller volume of the extraction phase in TFME, the sensitivity of TFME can exceed that of SPE for samples where the target analytes vary substantially in polarity.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX