Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 11 von 78

Details

Autor(en) / Beteiligte
Titel
Techno-economic performance analysis of parabolic trough collector in Dhahran, Saudi Arabia
Ist Teil von
  • Energy conversion and management, 2014-10, Vol.86, p.622-633
Ort / Verlag
Kidlington: Elsevier Ltd
Erscheinungsjahr
2014
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • •The optical and thermal efficiencies of PTC have been evaluated under Dhahran’s weather conditions.•The variation in optical efficiency in winter is noticeably larger than that in summer.•The maximum optical efficiency can be reached in Dhahran is 73.5%.•The minimum optical efficiency is 61%.•The cost declines rapidly when the solar field size increases from 10hectare to 60hectare. The main criteria to assess a new solar thermal power plant are its performance and cost. Therefore, there is a need to present to the open literature a detailed modeling procedure and cost analyses to help researchers, engineers, and decision makers. The main objectives of this work are to develop a code and to evaluate the optical and thermal efficiencies of parabolic trough collectors (PTCs) solar field considering average hourly, daily, monthly, or annually averaged weather data; in addition to detailed cost analysis of the solar field. In this regard, a computer simulation code was developed using Engineering Equations Solver (EES). This simulation code was validated against Thermoflex code and data previously published in the public literature, and excellent agreements ware observed. The types of the PTC considered in the simulation are EuroTrough solar collector (ET-100) and for LUZ solar collector LS-3. The present study revealed that the maximum optical efficiency that can be reached in Dhahran is 73.5%, whereas the minimum optical efficiency is 61%. This study showed also that the specific cost for a PTC field per unit aperture area and the specific cost of different mechanical works can be cut by about 46% and 48% at 10hectare and by about 72% and 75% at 160hectare, respectively, compared to that at 2.8hectare. On the other hand, the specific civil costs remain constant independent of the plant size. It was found that the ratio of the cost of the PTC to the solar field area decreases significantly as the solar field size increases. This decrement is very significant until the solar field size reaches 60hectare and then the slope of the decrement is becoming insignificant. Therefore, it is recommended to have a solar field size of 60hectare or larger.
Sprache
Englisch
Identifikatoren
ISSN: 0196-8904
eISSN: 1879-2227
DOI: 10.1016/j.enconman.2014.06.023
Titel-ID: cdi_proquest_miscellaneous_1786201525

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX