Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 1 von 12352
Physical review letters, 2015-03, Vol.114 (11), p.110504-110504, Article 110504
2015
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Entanglement-based machine learning on a quantum computer
Ist Teil von
  • Physical review letters, 2015-03, Vol.114 (11), p.110504-110504, Article 110504
Ort / Verlag
United States
Erscheinungsjahr
2015
Quelle
American Physical Society
Beschreibungen/Notizen
  • Machine learning, a branch of artificial intelligence, learns from previous experience to optimize performance, which is ubiquitous in various fields such as computer sciences, financial analysis, robotics, and bioinformatics. A challenge is that machine learning with the rapidly growing "big data" could become intractable for classical computers. Recently, quantum machine learning algorithms [Lloyd, Mohseni, and Rebentrost, arXiv.1307.0411] were proposed which could offer an exponential speedup over classical algorithms. Here, we report the first experimental entanglement-based classification of two-, four-, and eight-dimensional vectors to different clusters using a small-scale photonic quantum computer, which are then used to implement supervised and unsupervised machine learning. The results demonstrate the working principle of using quantum computers to manipulate and classify high-dimensional vectors, the core mathematical routine in machine learning. The method can, in principle, be scaled to larger numbers of qubits, and may provide a new route to accelerate machine learning.
Sprache
Englisch
Identifikatoren
ISSN: 0031-9007
eISSN: 1079-7114
DOI: 10.1103/physrevlett.114.110504
Titel-ID: cdi_proquest_miscellaneous_1786199165

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX