Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 10 von 14528
Agricultural and forest meteorology, 2013-05, Vol.173, p.74-84
2013

Details

Autor(en) / Beteiligte
Titel
Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics
Ist Teil von
  • Agricultural and forest meteorology, 2013-05, Vol.173, p.74-84
Ort / Verlag
Amsterdam: Elsevier B.V
Erscheinungsjahr
2013
Link zum Volltext
Quelle
Elsevier ScienceDirect Journals Complete
Beschreibungen/Notizen
  • ► We predict county-level maize and soybean yield in the United States with MODIS data. ► We test the ability of MODIS data to capture inter-annual variations in crop yields. ► We explore high and moderate resolution maps for isolating agricultural areas. ► Incorporating MODIS derived phenology metrics improved model performance. ► The two-band enhanced vegetation index provided the best basis for yield predictions. We used data from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) in association with county-level data from the United States Department of Agriculture (USDA) to develop empirical models predicting maize and soybean yield in the Central United States. As part of our analysis we also tested the ability of MODIS to capture inter-annual variability in yields. Our results show that the MODIS two-band Enhanced Vegetation Index (EVI2) provides a better basis for predicting maize yields relative to the widely used Normalized Difference Vegetation Index (NDVI). Inclusion of information related to crop phenology derived from MODIS significantly improved model performance within and across years. Surprisingly, using moderate spatial resolution data from the MODIS Land Cover Type product to identify agricultural areas did not degrade model results relative to using higher-spatial resolution crop-type maps developed by the USDA. Correlations between vegetation indices and yield were highest 65–75 days after greenup for maize and 80 days after greenup for soybeans. EVI2 was the best index for predicting maize yield in non-semi-arid counties (R2=0.67), but the Normalized Difference Water Index (NDWI) performed better in semi-arid counties (R2=0.69), probably because the NDWI is sensitive to irrigation in semi-arid areas with low-density agriculture. NDVI and EVI2 performed equally well predicting soybean yield (R2=0.69 and 0.70, respectively). In addition, EVI2 was best able to capture large negative anomalies in maize yield in 2005 (R2=0.73). Overall, our results show that using crop phenology and a combination of EVI2 and NDWI have significant benefit for remote sensing-based maize and soybean yield models.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX