Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Batch Reinforcement Learning for Robotic Soccer Using the Q-Batch Update-Rule
Ist Teil von
Journal of intelligent & robotic systems, 2015-12, Vol.80 (3-4), p.385-399
Ort / Verlag
Dordrecht: Springer Netherlands
Erscheinungsjahr
2015
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
Reinforcement Learning is increasingly becoming a valuable alternative to tackle many of the challenges existing in a semi-structured, non-deterministic and adversarial environment such as robotic soccer. Batch Reinforcement Learning is a class of Reinforcement Learning methods characterized by processing a batch of interactions. By storing all past interactions, Batch RL methods are extremely data-efficient which makes this class of methods very appealing for robotics applications, specially when learning directly on physical robotic platforms.This paper presents the application of Batch Reinforcement Learning to obtain efficient robotic soccer controllers on physical platforms. To learn the controllers we propose the application of Q-Batch, a novel update-rule that exploits the episodic nature of the interactions in Batch Reinforcement Learning. The approach was validated in three different tasks with increasing difficulty. Results show the proposed approach is able to outperform hand-coded policies, for all the tasks, in a reduced amount of time. Additionally, for one of the tasks, a comparison between Q-Batch and Q-learning is carried out, and results show that, Q-Batch obtains better policies than Q-learning for the same amount of interaction time.