Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 17 von 208229
Accounts of chemical research, 2013-10, Vol.46 (10), p.2254-2262
2013

Details

Autor(en) / Beteiligte
Titel
Colloidal Graphene Quantum Dots with Well-Defined Structures
Ist Teil von
  • Accounts of chemical research, 2013-10, Vol.46 (10), p.2254-2262
Ort / Verlag
United States: American Chemical Society
Erscheinungsjahr
2013
Link zum Volltext
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • When the size of a semiconductor crystal is reduced to the nanometer scale, the crystal boundary significantly modifies electron distribution, making properties such as bandgap and energy relaxation dynamics size dependent. This phenomenon, known as quantum confinement, has been demonstrated in many semiconductor materials, leading to practical applications in areas such as bioimaging, photovoltaics, and light-emitting diodes. Graphene, a unique type of semiconductor, is a two-dimensional crystal with a zero bandgap and a zero effective mass of charge carriers. Consequently, we expect new phenomena from nanometer-sized graphene, or graphene quantum dots (QDs), because the energy of charge carriers in graphene follows size-scaling laws that differ from those in other semiconductors. From a chemistry point of view, graphene is made of carbon, an element for which researchers have developed a whole branch of chemistry. Thus, it is possible to synthesize graphene QDs through stepwise, well-controlled organic chemistry, achieving structures with an atomic precision that has not been possible for any other semiconductor materials. Recently, we developed a new solubilizing strategy that led to synthesis of stable colloidal graphene QDs with more than 100 conjugated carbon atoms, allowing us to study their properties in a new size regime. In this Account, we review our recent progress working with the colloidal graphene QDs, including their synthesis and stabilization, tuning of their properties, and new phenomena in energy relaxation dynamics. In particular, we have observed extraordinarily slow “electron cooling”the relaxation of electrons from high excited states to lower ones. With further investigation, these high-energy electrons could potentially be harvested in solar energy applications, for example, creating more efficient photovoltaic cells. We discuss additional emerging opportunities with these new materials and current challenges, hoping to draw the interest of researchers in various fields to overcome these obstacles.
Sprache
Englisch
Identifikatoren
ISSN: 0001-4842
eISSN: 1520-4898
DOI: 10.1021/ar300137p
Titel-ID: cdi_proquest_miscellaneous_1770271713

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX