Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Nano letters, 2013-12, Vol.13 (12), p.5891-5899
2013
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
A Long-Life, High-Rate Lithium/Sulfur Cell: A Multifaceted Approach to Enhancing Cell Performance
Ist Teil von
  • Nano letters, 2013-12, Vol.13 (12), p.5891-5899
Ort / Verlag
Washington, DC: American Chemical Society
Erscheinungsjahr
2013
Quelle
MEDLINE
Beschreibungen/Notizen
  • Lithium/sulfur (Li/S) cells are receiving significant attention as an alternative power source for zero-emission vehicles and advanced electronic devices due to the very high theoretical specific capacity (1675 mA·h/g) of the sulfur cathode. However, the poor cycle life and rate capability have remained a grand challenge, preventing the practical application of this attractive technology. Here, we report that a Li/S cell employing a cetyltrimethyl ammonium bromide (CTAB)-modified sulfur-graphene oxide (S–GO) nanocomposite cathode can be discharged at rates as high as 6C (1C = 1.675 A/g of sulfur) and charged at rates as high as 3C while still maintaining high specific capacity (∼800 mA·h/g of sulfur at 6C), with a long cycle life exceeding 1500 cycles and an extremely low decay rate (0.039% per cycle), perhaps the best performance demonstrated so far for a Li/S cell. The initial estimated cell-level specific energy of our cell was ∼500 W·h/kg, which is much higher than that of current Li-ion cells (∼200 W·h/kg). Even after 1500 cycles, we demonstrate a very high specific capacity (∼740 mA·h/g of sulfur), which corresponds to ∼414 mA·h/g of electrode: still higher than state-of-the-art Li-ion cells. Moreover, these Li/S cells with lithium metal electrodes can be cycled with an excellent Coulombic efficiency of 96.3% after 1500 cycles, which was enabled by our new formulation of the ionic liquid-based electrolyte. The performance we demonstrate herein suggests that Li/S cells may already be suitable for high-power applications such as power tools. Li/S cells may now provide a substantial opportunity for the development of zero-emission vehicles with a driving range similar to that of gasoline vehicles.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX