Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
ACM transactions on database systems, 2015-06, Vol.40 (2), p.1-47
2015
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Optimizing Batch Linear Queries under Exact and Approximate Differential Privacy
Ist Teil von
  • ACM transactions on database systems, 2015-06, Vol.40 (2), p.1-47
Erscheinungsjahr
2015
Quelle
ACM Digital Library
Beschreibungen/Notizen
  • Differential privacy is a promising privacy-preserving paradigm for statistical query processing over sensitive data. It works by injecting random noise into each query result such that it is provably hard for the adversary to infer the presence or absence of any individual record from the published noisy results. The main objective in differentially private query processing is to maximize the accuracy of the query results while satisfying the privacy guarantees. Previous work, notably Li et al. [2010], has suggested that, with an appropriate strategy, processing a batch of correlated queries as a whole achieves considerably higher accuracy than answering them individually. However, to our knowledge there is currently no practical solution to find such a strategy for an arbitrary query batch; existing methods either return strategies of poor quality (often worse than naive methods) or require prohibitively expensive computations for even moderately large domains. Motivated by this, we propose a low-rank mechanism (LRM), the first practical differentially private technique for answering batch linear queries with high accuracy. LRM works for both exact (i.e., ϵ-) and approximate (i.e., (ϵ, δ)-) differential privacy definitions. We derive the utility guarantees of LRM and provide guidance on how to set the privacy parameters, given the user's utility expectation. Extensive experiments using real data demonstrate that our proposed method consistently outperforms state-of-the-art query processing solutions under differential privacy, by large margins.
Sprache
Englisch
Identifikatoren
ISSN: 0362-5915
eISSN: 1557-4644
DOI: 10.1145/2699501
Titel-ID: cdi_proquest_miscellaneous_1744703183

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX