Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 26 von 506
Journal of chemical theory and computation, 2014-04, Vol.10 (4), p.1426-1439
2014
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
General Multiobjective Force Field Optimization Framework, with Application to Reactive Force Fields for Silicon Carbide
Ist Teil von
  • Journal of chemical theory and computation, 2014-04, Vol.10 (4), p.1426-1439
Ort / Verlag
United States: American Chemical Society
Erscheinungsjahr
2014
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • First-principles-based force fields prepared from large quantum mechanical data sets are now the norm in predictive molecular dynamics simulations for complex chemical processes, as opposed to force fields fitted solely from phenomenological data. In principle, the former allow improved accuracy and transferability over a wider range of molecular compositions, interactions, and environmental conditions unexplored by experiments. That is, assuming they have been optimally prepared from a diverse training set. The trade-off has been force field engines that are functionally complex, with a large number of nonbonded and bonded analytical forms that give rise to rather large parameter search spaces. To address this problem, we have developed GARFfield (genetic algorithm-based reactive force field optimizer method), a hybrid multiobjective Pareto-optimal parameter development scheme based on genetic algorithms, hill-climbing routines and conjugate-gradient minimization. To demonstrate the capabilities of GARFfield we use it to develop two very different force fields: (1) the ReaxFF reactive force field for modeling the adiabatic reactive dynamics of silicon carbide growth from an methyltrichlorosilane precursor and (2) the SiC electron force field with effective core pseudopotentials for modeling nonadiabatic dynamic phenomena with highly excited electronic states. The flexible and open architecture of GARFfield enables efficient and fast parallel optimization of parameters from quantum mechanical data sets for demanding applications like ReaxFF, electronic fast forward (or electron force field), and others including atomistic reactive charge-optimized many-body interatomic potentials, Morse, and coarse-grain force fields.
Sprache
Englisch
Identifikatoren
ISSN: 1549-9618
eISSN: 1549-9626
DOI: 10.1021/ct5001044
Titel-ID: cdi_proquest_miscellaneous_1735328290
Format

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX