Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 1 von 183
Journal of chemical theory and computation, 2015-04, Vol.11 (4), p.1864-1874
2015
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Long-Time-Step Molecular Dynamics through Hydrogen Mass Repartitioning
Ist Teil von
  • Journal of chemical theory and computation, 2015-04, Vol.11 (4), p.1864-1874
Ort / Verlag
United States: American Chemical Society
Erscheinungsjahr
2015
Quelle
MEDLINE
Beschreibungen/Notizen
  • Previous studies have shown that the method of hydrogen mass repartitioning (HMR) is a potentially useful tool for accelerating molecular dynamics (MD) simulations. By repartitioning the mass of heavy atoms into the bonded hydrogen atoms, it is possible to slow the highest-frequency motions of the macromolecule under study, thus allowing the time step of the simulation to be increased by up to a factor of 2. In this communication, we investigate further how this mass repartitioning allows the simulation time step to be increased in a stable fashion without significantly increasing discretization error. To this end, we ran a set of simulations with different time steps and mass distributions on a three-residue peptide to get a comprehensive view of the effect of mass repartitioning and time step increase on a system whose accessible phase space is fully explored in a relatively short amount of time. We next studied a 129-residue protein, hen egg white lysozyme (HEWL), to verify that the observed behavior extends to a larger, more-realistic, system. Results for the protein include structural comparisons from MD trajectories, as well as comparisons of pK a calculations via constant-pH MD. We also calculated a potential of mean force (PMF) of a dihedral rotation for the MTS [(1-oxyl-2,2,5,5-tetramethyl-pyrroline-3-methyl)­methanethiosulfonate] spin label via umbrella sampling with a set of regular MD trajectories, as well as a set of mass-repartitioned trajectories with a time step of 4 fs. Since no significant difference in kinetics or thermodynamics is observed by the use of fast HMR trajectories, further evidence is provided that long-time-step HMR MD simulations are a viable tool for accelerating MD simulations for molecules of biochemical interest.
Sprache
Englisch
Identifikatoren
ISSN: 1549-9618
eISSN: 1549-9626
DOI: 10.1021/ct5010406
Titel-ID: cdi_proquest_miscellaneous_1734281371

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX