Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Proceedings of the National Academy of Sciences - PNAS, 2015-11, Vol.112 (45), p.13934-13939
2015
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Fundamental insights into ontogenetic growth from theory and fish
Ist Teil von
  • Proceedings of the National Academy of Sciences - PNAS, 2015-11, Vol.112 (45), p.13934-13939
Ort / Verlag
United States: National Academy of Sciences
Erscheinungsjahr
2015
Quelle
MEDLINE
Beschreibungen/Notizen
  • The fundamental features of growth may be universal, because growth trajectories of most animals are very similar, but a unified mechanistic theory of growth remains elusive. Still needed is a synthetic explanation for how and why growth rates vary as body size changes, both within individuals over their ontogeny and between populations and species over their evolution. Here, we use Bertalanffy growth equations to characterize growth of rayfinned fishes in terms of two parameters, the growth rate coefficient,K,and final body mass,m ∞. We derive two alternative empirically testable hypotheses and test them by analyzing data from FishBase. Across 576 species, which vary in size at maturity by almost nine orders of magnitude,Kscaled as m ∞ − 0.23 . This supports our first hypothesis that growth rate scales as m ∞ − 0.25 as predicted by metabolic scaling theory; it implies that species that grow to larger mature sizes grow faster as juveniles. Within fish species, however,Kscaled as m ∞ − 0.35 . This supports our second hypothesis, which predicts that growth rate scales as m ∞ − 0.33 when all juveniles grow at the same rate. The unexpected disparity between across- and within-species scaling challenges existing theoretical interpretations. We suggest that the similar ontogenetic programs of closely related populations constrain growth to m ∞ − 0.33 scaling, but as species diverge over evolutionary time they evolve the near-optimal m ∞ − 0.25 scaling predicted by metabolic scaling theory. Our findings have important practical implications because fish supply essential protein in human diets, and sustainable yields from wild harvests and aquaculture depend on growth rates.
Sprache
Englisch
Identifikatoren
ISSN: 0027-8424
eISSN: 1091-6490
DOI: 10.1073/pnas.1518823112
Titel-ID: cdi_proquest_miscellaneous_1732600687

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX