Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 8 von 21

Details

Autor(en) / Beteiligte
Titel
The Major Metabolite of Equilin, 4-Hydroxyequilin, Autoxidizes to an o-Quinone Which Isomerizes to the Potent Cytotoxin 4-Hydroxyequilenin-o-quinone
Ist Teil von
  • Chemical research in toxicology, 1999-02, Vol.12 (2), p.204-213
Ort / Verlag
United States: American Chemical Society
Erscheinungsjahr
1999
Link zum Volltext
Quelle
MEDLINE
Beschreibungen/Notizen
  • The risk factors for women developing breast and endometrial cancers are all associated with a lifetime of estrogen exposure. Estrogen replacement therapy in particular has been correlated with a slight increased cancer risk. Previously, we showed that equilenin, a minor component of Premarin (Wyeth-Ayerst), was metabolized to highly cytotoxic quinoids which caused oxidative stress and alkylation of DNA in vitro [Bolton, J. L., Pisha, E., Zhang, F., and Qiu, S. (1998) Chem. Res. Toxicol. 11, 1113−1127]. In this study, we have compared the chemistry of the major catechol metabolite of equilin (4-hydroxyequilin), which is found in several estrogen replacement formulations, to the equilenin catechol (4-hydroxyequilenin). Unlike endogenous catechol estrogens, both equilin and equilenin were primarily converted by rat liver microsomes to 4-hydroxylated rather than 2-hydroxylated o-quinone GSH conjugates. With equilin, a small amount of 2-hydroxyequilin GSH quinoids were detected (4-hydroxyequilin:2-hydroxyequilin ratio of 6:1); however, no peaks corresponding to 2-hydroxyequilenin were observed in incubations with equilenin. These data suggest that unsaturation in the B ring alters the regiochemistry of P450-catalyzed hydroxylation from primarily 2-hydroxylation for endogenous estrogens to 4-hydroxylation for equine estrogens. 4-Hydroxyequilenin-o-quinone reacts with GSH to give two mono-GSH conjugates and one di-adduct. The behavior of 4-hydroxyequilin was found to be more complex than 4-hydroxyequilenin as conjugates resulting from 4-hydroxyequilenin were detected in addition to the 4-hydroxyequilin−GSH adducts. The mechanism of decomposition of 4-hydroxyequilin likely involves isomerization to a quinone methide which readily aromatizes to 4-hydroxyequilenin followed by autoxidation to 4-hydroxyequilenin-o-quinone. Similar results were obtained with 2-hydroxyequilin, although, in contrast to 4-hydroxyequilenin, 2-hydroxyequilenin does not autoxidize and the reaction stops at the catechol. Since 4-hydroxyequilin is converted to 4-hydroxyequilenin and 4-hydroxyequilenin-o-quinone, similar effects were observed for this equine catechol, including consumption of NAD(P)H likely by the 4-hydroxyequilenin-o-quinone, depletion of molecular oxygen by 4-hydroxyequilenin or its semiquinone radical, and alkylation of deoxynucleosides and DNA by 4-hydroxyequilenin quinoids. Finally, preliminary studies conducted with the human breast tumor cell line MCF-7 demonstrated that the cytotoxic effects of the catechol estrogens from estrone, equilin, and 2-hydroxyequilenin were similar, whereas 4-hydroxyequilenin was a much more potent cytotoxin (∼30-fold). These results suggest that the catechol metabolites of equine estrogens have the ability to cause alkylation/redox damage in vivo primarily through formation of 4-hydroxyequilenin quinoids.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX