Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 19 von 23
Genetics and molecular research, 2015-06, Vol.14 (2), p.6808-6818
2015
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Identification of smut-responsive genes in sugarcane using cDNA-SRAP
Ist Teil von
  • Genetics and molecular research, 2015-06, Vol.14 (2), p.6808-6818
Ort / Verlag
Brazil
Erscheinungsjahr
2015
Quelle
MEDLINE
Beschreibungen/Notizen
  • Sugarcane smut, caused by the fungus Sporisorium scitamineum, is one of the main diseases that affect sugarcane worldwide. In the present study, the cDNA-SRAP technique was used to identify genes that are likely to be involved in the response of sugarcane to S. scitamineum infection. In total, 21 bands with significant differential expression during cDNA-SRAP analysis were cloned and sequenced. Real-time qPCR confirmation demonstrated that expression of 19 of these 21 differential bands was consistent with the expression observed during cDNA-SRAP analysis, with a deduced false positive rate of 9.5%. Sequence alignment indicated that 18 of 19 differentially expressed genes showed homologies from 19% to 100% to certain genes in GenBank, including the following genes: topoisomerase (EU048780), ethylene insensitive (EU048778), and tetraspanin (EU048770). A real-time qPCR assay showed that during 0-72 h after pathogen infection, expression of the topoisomerase and the ethylene insensitive genes was upregulated, whereas expression of the tetraspanin gene was downregulated, identical to the expression patterns observed under salicylic acid treatment. Therefore, all three genes are thought to play a role during S. scitamineum challenge, but with different functions. To our knowledge, this is the first report on the application of cDNA-SRAP in differential gene expression analysis of sugarcane during a sugarcane-S. scitamineum interaction. The results obtained also contribute to a better understanding of the molecular mechanisms associated with sugarcane-S. scitamineum interactions.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX