Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 4 von 323
Proceedings of the National Academy of Sciences - PNAS, 2015-08, Vol.112 (34), p.E4642-E4650
2015
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Shape control and compartmentalization in active colloidal cells
Ist Teil von
  • Proceedings of the National Academy of Sciences - PNAS, 2015-08, Vol.112 (34), p.E4642-E4650
Ort / Verlag
United States: National Academy of Sciences
Erscheinungsjahr
2015
Quelle
EZB Electronic Journals Library
Beschreibungen/Notizen
  • Small autonomous machines like biological cells or soft robots can convert energy input into control of function and form. It is desired that this behavior emerges spontaneously and can be easily switched over time. For this purpose we introduce an active matter system that is loosely inspired by biology and which we term an active colloidal cell. The active colloidal cell consists of a boundary and a fluid interior, both of which are built from identical rotating spinners whose activity creates convective flows. Similarly to biological cell motility, which is driven by cytoskeletal components spread throughout the entire volume of the cell, active colloidal cells are characterized by highly distributed energy conversion. We demonstrate that we can control the shape of the active colloidal cell and drive compartmentalization by varying the details of the boundary (hard vs. flexible) and the character of the spinners (passive vs. active). We report buckling of the boundary controlled by the pattern of boundary activity, as well as formation of core–shell and inverted Janus phase-separated configurations within the active cell interior. As the cell size is increased, the inverted Janus configuration spontaneously breaks its mirror symmetry. The result is a bubble–crescent configuration, which alternates between two degenerate states over time and exhibits collective migration of the fluid along the boundary. Our results are obtained using microscopic, non–momentum-conserving Langevin dynamics simulations and verified via a phase-field continuum model coupled to a Navier–Stokes equation.
Sprache
Englisch
Identifikatoren
ISSN: 0027-8424
eISSN: 1091-6490
DOI: 10.1073/pnas.1513361112
Titel-ID: cdi_proquest_miscellaneous_1717500255

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX