Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 10 von 801
IEEE transactions on visualization and computer graphics, 2014-12, Vol.20 (12), p.2043-2052
2014
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Origin-Destination Flow Data Smoothing and Mapping
Ist Teil von
  • IEEE transactions on visualization and computer graphics, 2014-12, Vol.20 (12), p.2043-2052
Ort / Verlag
United States: IEEE
Erscheinungsjahr
2014
Quelle
IEEE Electronic Library Online
Beschreibungen/Notizen
  • This paper presents a new approach to flow mapping that extracts inherent patterns from massive geographic mobility data and constructs effective visual representations of the data for the understanding of complex flow trends. This approach involves a new method for origin-destination flow density estimation and a new method for flow map generalization, which together can remove spurious data variance, normalize flows with control population, and detect high-level patterns that are not discernable with existing approaches. The approach achieves three main objectives in addressing the challenges for analyzing and mapping massive flow data. First, it removes the effect of size differences among spatial units via kernel-based density estimation, which produces a measurement of flow volume between each pair of origin and destination. Second, it extracts major flow patterns in massive flow data through a new flow sampling method, which filters out duplicate information in the smoothed flows. Third, it enables effective flow mapping and allows intuitive perception of flow patterns among origins and destinations without bundling or altering flow paths. The approach can work with both point-based flow data (such as taxi trips with GPS locations) and area-based flow data (such as county-to-county migration). Moreover, the approach can be used to detect and compare flow patterns at different scales or in relatively sparse flow datasets, such as migration for each age group. We evaluate and demonstrate the new approach with case studies of U.S. migration data and experiments with synthetic data.
Sprache
Englisch
Identifikatoren
ISSN: 1077-2626
eISSN: 1941-0506
DOI: 10.1109/TVCG.2014.2346271
Titel-ID: cdi_proquest_miscellaneous_1711548332

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX