Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Lower limb flexion posture relates to energy absorption during drop landings with soldier-relevant body borne loads
Ist Teil von
Applied ergonomics, 2016-01, Vol.52, p.54-61
Ort / Verlag
England: Elsevier Ltd
Erscheinungsjahr
2016
Quelle
MEDLINE
Beschreibungen/Notizen
Fifteen military personnel performed 30-cm drop landings to quantify how body borne load (light, ∼6 kg, medium, ∼20 kg, and heavy, ∼40 kg) impacts lower limb kinematics and knee joint energy absorption during landing, and determine whether greater lower limb flexion increases energy absorption while landing with load. Participants decreased peak hip (P = 0.002), and knee flexion (P = 0.007) posture, but did not increase hip (P = 0.796), knee (P = 0.427) or ankle (P = 0.161) energy absorption, despite exhibiting greater peak hip (P = 0.003) and knee (P = 0.001) flexion, and ankle (P = 0.003) dorsiflexion angular impulse when landing with additional load. Yet, when landing with the light and medium loads, greater hip (R2 = 0.500, P = 0.003 and R2 = 0.314, P = 0.030) and knee (R2 = 0.431, P = 0.008 and R2 = 0.342, P = 0.022) flexion posture predicted larger knee joint energy absorption. Thus, military training that promotes hip and knee flexion, and subsequently greater energy absorption during landing, may potentially reduce risk of musculoskeletal injury and optimize soldier performance.
•When landing with body borne load, greater hip and knee flexion may promote knee energy absorption.•Landing with body borne load increased the demand placed on the lower extremity.•Energy absorption by the lower limb did not increase when landing with body borne load.•Participants relied upon extended hip and knee angle when landing with load.