Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 16 von 25
Journal of biomedical materials research. Part A, 2015-06, Vol.103 (6), p.2066-2076
2015
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Surface chemistry gradients on silicone elastomers for high-throughput modulation of cell-adhesive interfaces
Ist Teil von
  • Journal of biomedical materials research. Part A, 2015-06, Vol.103 (6), p.2066-2076
Ort / Verlag
United States: Blackwell Publishing Ltd
Erscheinungsjahr
2015
Quelle
Wiley Online Library - AutoHoldings Journals
Beschreibungen/Notizen
  • Combinatorial and high‐throughput approaches to screening cell responses to material properties accelerate the speed of discovery and facilitate the identification of cell instructive cues or trends that may be missed by discrete sampling. However, these technologies have not yet been widely applied to materials with tissue‐like stiffness. The fabrication of monotonically varying surface chemistry gradients on polydimethylsiloxane, an elastic biomaterial, and the influence of these engineered surfaces on protein adsorption and adherent cell morphology were explored in this study. Crosslinked networks of polydimethylsiloxane were functionalized with a hydrophobic self‐assembled monolayer and then modified by spatiotemporally regulated ultraviolet ozonolysis to obtain gradients of oxygenated species ranging from ∼10° to ∼100° in water contact angle. Automated microscopy and image analysis of fibroblast cell morphology revealed a strong correlation between cell spreading and hydrophobicity. However, structural and functional analysis of the fibronectin interface indicated a proportional increase in cell spreading with adsorption, but a biphasic relationship with fibronectin conformation, underscoring the complexity of the adhesive interface. This work demonstrates the development of an elastomer surface modification platform that can be extended to future combinatorial studies of biological responses to chemical and mechanical material properties. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 103A: 2066–2076, 2015.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX