Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
This paper presents an analytical layer-element solution to non-axisymmetric consolidation of multilayered poroelastic materials with anisotropic permeability and compressible constituents. By applying Fourier expansions, Hankel transforms and Laplace transforms to the state variables involved in the governing equations of poroelasticity with respect to the circumferential, radial and time coordinates, respectively, the analytical layer-element (i.e. a symmetric stiffness matrix) is derived, which describes the relationship between the transformed generalized stresses and displacements at the surface (z=0) and those at an arbitrary depth z, considering the corresponding boundary and continuity conditions at the layer interfaces, the global stiffness matrix of a multilayered system is assembled in the transformed domain. The actual solutions in the physical domain are acquired by applying numerical quadrature schemes for the inversion of the Laplace–Hankel transform. Finally, numerical calculation is presented to investigate the influence of layering and poroelastic material parameters on consolidation process.